Maths Autumn 1

Year 11 Foundation

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 11 Overview
Page 4: Knowledge Organiser
Page 5-7: Week 1 - Expanding Brackets
Page 8-9: Week2 - Factorising
Page 10-11: Week 3 - Solving Quadratic Equations
Page 12-13: Week 4 - Rearranging Formulae
Page 14-16: Week 5 - Area
Page 17-20: Week 6 - Volume
Page 21-22: Week 7 - Volume
Page 23: Assessment Ladder
(\$Stewards Academy
Big Picture

SStewards Academy

Knowledge Organiser

Stewards Academy

Week 1: Expanding Brackets

- LI: Expand products of binomials

Demonstration Videos:

https://corbettmaths.com/2013/12/23/expanding-brackets-video-13/ https://corbettmaths.com/2013/12/23/expanding-two-brackets-video-14/

Expanding Brackets

To expand one bracket, make sure the term on the outside multiplies everything on the inside,
e.g. $4(2 x-3)-8 x-12$

To expand two brackets, follow the F.O.I.L. method (First, Outer, Inner, Last), e.g.

```
(x+3)(x+5)}-\mp@subsup{x}{}{2}+5x+3x+1
    - }\mp@subsup{x}{}{2}+8x+1
```


Tasks:

Name

$4 x-2$	$42 x+21$	$15 x-10$	$8 x-6$	$10 x-5$
$14 x-14$	$6 x-2$	$9 x-6$	$18 x-18$	$2 x+4$
$12 x+8$	$12 x-8$	$8 x-4$	$15 x-18$	$6 x+9$
$12 x+9$	$6 x-3$	$10 x+4$	$20 x+15$	$15 x+9$
$9 x+6$	$12 x-12$	$30 x+18$	$20 x+16$	$6 x+6$

$2(5 x+2)$	$6(2 x-2)$
$3(3 x-2)$	$2(2 x-1)$
$7(2 x-2)$	$2(3 x-1)$
$4(2 x-1)$	$6(3 x-3)$
$5(3 x-2)$	$7(6 x+3)$

Expanding brackets

$4(3 x+2)$	$3(2 x-1)$
$2(1 x+2)$	$6(5 x+3)$
$5(2 x-1)$	$5(4 x+3)$
$4(5 x+4)$	$4(3 x-2)$
$3(5 x+3)$	$3(2 x+2)$
TOTAL	

$4(2 x+3) \rightarrow$ $5(6 x+1) \rightarrow$ $2(3 x-5) \rightarrow$
$2(4-3 x) \rightarrow$ $(4-3 x) 4 \rightarrow$ $5(2 x+4 y-2)$ \rightarrow
$3(5 x+2)-4 x \rightarrow$ $3(4 x+3)+2(5 x-3)$ \rightarrow $(5 x+2) 4-3(5 x+6)$ \rightarrow

$(x+4)(x-2)$

$$
(x-3)(x-6)
$$

$$
(2 x+3)(x-2)
$$

$$
(2 x+3)(x+5)
$$

$(3 x-4)(2 x-3)$

	（
1）	$(x+2)(x+3)$
2）	$(x+1)(x+3)$
3）	$(x+1)(x+1)$
4）	$(x+4)(x+3)$
5）	$(x+2)(x+5)$
6）	$(x+7)(x+4)$
7）	$(x+5)(x+1)$
8）	$(x+3)(x+3)$

1）$(x-2)(x-1)$
2）$(x-1)(x-3)$
3）$(x-2)(x-3)$
4）$(x-5)(x-4)$
5）$(x-2)(x-2)$
6）$(x-1)(x-5)$
7）$(x-2)(x-7)$
8）$(x-5)(x-5)$

大为令

1）$(x+1)(x-3)$
2）$(x-2)(x+5)$
3）$(x+3)(x-6)$
4）$(x+2)(x-5)$
5）$(x-1)(x+8)$
6）$(x-4)(x+4)$
7）$(x-8)(x+3)$
8）$(x+9)(x-3)$

Exam Practice:

https://corbettmaths.com/wp-content/uploads/2013/02/expanding-brackets-pdf.pdf https://corbettmaths.com/wp-content/uploads/2013/02/expanding-two-brackets-pdf1.pdf

Challenge:

$A B C H$ is a square.
HCFG is a rectangle.
$C D E F$ is a square.
They are joined to make an L-shape.
Not drawn accurately

Show that the total area of the L-shape, in cm^{2}, is $x^{2}+9 x+27$

Stewards Academy

Week 2: Factorising

- LI: Factorise quadratic expressions including the difference of two squares

Demonstration Videos:

https://corbettmaths.com/2013/02/06/factorisation/
https://corbettmaths.com/2013/02/06/factorising-quadratics-1/
https://corbettmaths.com/2013/02/08/difference-between-two-squares/

$$
\begin{aligned}
& \text { Factorise: } \\
& x^{2}+9 x+20
\end{aligned}
$$

1) List number pairs with a product of +20 .

> 1 and 20
> 2 and 10
> 4 and 5
2) Find the pair with a sum of +9 .

$$
(x+4)(x+5)
$$

We can check by expanding the brackets.

$$
\begin{gathered}
\text { Factorise: } \\
x^{2}-4 x-12
\end{gathered}
$$

1) List number pairs with a product of -12 .

$$
\begin{aligned}
& 1 \text { and }-12 \\
& -1 \text { and } 12 \\
& 2 \text { and }-6 \\
& -2 \text { and } 6 \\
& -3 \text { and } 4 \\
& 3 \text { and }-4
\end{aligned}
$$

2) Find the pair with a sum of -4 .

$$
(x+2)(x-6)
$$

We can check by expanding the brackets.

Tasks:

1	$\$$	$\sum \stackrel{1}{2}$
Factorise	Factorise	Factorise
1) $2 x+4$	1) $12 x+15$	1) $5 x^{2}+10 x$
2) $6 x+12$	2) $15 x-20$	2) $12 x^{2}+18 x$
3) $8 \mathrm{x}-16$	3) $24 x+18$	3) $15 x^{2}-10 x$
4) $8 x+4$	4) $36-15 x$	4) $60 x-25 x^{2}$
5) $12 x+3$	5) $48+20 x$	5) $21 x^{2}-49 x$
6) $14+7 x$	6) $30 \mathrm{x}+35$	6) $24 x^{2}-42 x$
7) $5 x+30$	7) $28 x-49$	7) $30 x^{2}-15 x$
8) $20-5 x$	8) $30-40 x$	8) $8 x-32 x^{2}$

SStewards Academy

Factorise the expressions into two brackets．
Watch out！
There are extra answers that are not needed！

$x^{2}+3 x-10$	$(x+3)(x-5)$
$(x+3)(x+5)$	$x^{2}-10 x+16$
$x^{2}+8 x+15$	$x^{2}+6 x-7$
$(x+6)(x+3)$	$(x-3)(x-5)$
$(x-2)(x+4)$	$(x+5)(x-2)$
$x^{2}+9 x+20$	$(x+4)(x+4)$
$(x+7)(x-1)$	$(x-3)(x-6)$
$x^{2}+9 x+18$	$x^{2}-8 x+15$
$(x-2)(x-8)$	$(x+2)(x-4)$
$(x+4)(x+5)$	$x^{2}-2 x-8$

	$\dot{\sim}$	ぶった
Factorise	Factorise	Factorise
1）$x^{2}+3 x+2$	1）$x^{2}-5 x+6$	1）$x^{2}-x-12$
2）$x^{2}+5 x+6$	2）$x^{2}-7 x+10$	2）$x^{2}+4 x-12$
3）$x^{2}+4 x+3$	3）$x^{2}-11 x+10$	3）$x^{2}-9 x-10$
4） $\mathrm{x}^{2}+7 x+10$	4）$x^{2}-8 x+12$	4）$x^{2}-x-20$
5） $\mathrm{x}^{2}+8 \mathrm{x}+16$	5）$x^{2}-7 x+12$	5）$x^{2}-4$
6）$x^{2}+8 x+12$	6）$x^{2}-6 x+8$	6）$x^{2}-4 x-21$
7）$x^{2}+8 x+16$	7）$x^{2}-4 x+4$	7）$x^{2}+x-20$
8）$x^{2}+11 x+10$	8）$x^{2}-11 x+30$	8）$x^{2}-x-56$

Factorise
1）
$x^{2}-9$
2）
$x^{2}-4$
3）
$x^{2}-100$
4）
$x^{2}-1$
5）
$x^{2}-16$
6）
$x^{2}-36$
7）
$x^{2}-64$
8）
$x^{2}-121$

Exam Practice：

https：／／corbettmaths．com／wp－content／uploads／2013／02／factorising－quadratics．pdf

S Stewards Academy

Week 3: Solving Quadratic Equations

- LI: Set up and solve quadratic equations

Demonstration Video:

https://corbettmaths.com/2013/05/03/solving-quadratics-by-factorising/

$$
x^{2}+\underset{b}{\text { Solve: }} \underset{c}{7 x+12=0}
$$

$\boldsymbol{b}=$ sum of number pair $c=$ product of number pair

List factors of c, find a pair with a sum of b.

$$
\left.\begin{array}{c}
\begin{array}{c}
+12,+1 \\
-12,-1
\end{array} \\
\begin{array}{c}
+6,+2 \\
-6,-2
\end{array} \\
(x+4)(x+3)=0 \\
(x+4)=0 \\
(x+3)=0 \quad x=-4
\end{array}\right)
$$

Solve:

$$
x^{2}+\underset{b}{5} x-24=0
$$

$b=$ sum of number pair $c=$ product of number pair List factors of c,
find a pair with a sum of b.

$$
\begin{array}{llll}
+24,-1 & +12,-2 & +8,-3 \sqrt{+6,-4} \\
-24,+1 & -12,+2 & -8,+3 & -6,+4
\end{array}
$$

$$
(x+8)(x-3)=0
$$

$$
(x+8)=0 \quad x=-8
$$

OR

$$
(x-3)=0 \quad x=3
$$

Solve:

$$
x^{2}-12 x+20=0
$$

$\boldsymbol{b}=$ sum of number pair $c=$ product of number pair

List factors of c, find a pair with a sum of b.

$$
\left.\begin{array}{lll}
+20,+1 \\
-20,-1 & +10,+2 \\
-10,-2
\end{array}\right) \begin{aligned}
& +5,+4 \\
& -5,-4
\end{aligned}
$$

$$
(x-10)(x-2)=0
$$

$$
(x-10)=0 \quad x=10
$$

$$
(x-2)=0 \quad x=2
$$

Tasks:

Option A: - Cut out all the cards. - Sort the equations into those - Match the answers to the eq factorising	at can and cannot be factorised tions which can be solved by	Factorising and solving	Option B: Solve by factorising to match the	uations to the solutions
$x=0 \quad x=12$	$x^{2}+x-2=0$	$x^{2}-2 x+8=0$	$x^{2}-x-12=0$	$x=-2 \quad x=10$
$x=2 \quad x=-4$	$x^{2}-6 x-8=0$	$x^{2}-8 x-10=0$	$x=1 \quad x=-2$	$x^{2}-5 x+24=0$
$x^{2}-9 x+20=0$	$x=-1 \quad x=12$	$x^{2}-10 x-12=0$	$x^{2}-2 x-24=0$	$x=0 \quad x=-12$
$x^{2}-11 x+24=0$	$x^{2}-12 x=0$	$x^{2}+6 x+8=0$	$x^{2}-8 x-20=0$	$x=3 x=8$
$x^{2}+x-12=0$	$x=5 \quad x=4$	$x^{2}+5 x-24=0$	$x^{2}-11 x-12=0$	$x^{2}+2 x-8=0$
$x=2 \quad x=10$	$x^{2}-12 x+20=0$	$x^{2}-x+1=0$	$x=-2 \quad x=-4$	$x=-8 \quad x=3$
$x=-3 \quad x=4$	$x^{2}+12 x=0$	$x=-4 \quad x=6$	$x^{2}-12=0$	$x=3 \quad x=-4$

a) $x^{2}+8 x+7=0$
b) $x^{2}+10 x-11=0$
c) $x^{2}-10 x+25=0$
d) $x^{2}+2 x-63=0$
e) $x^{2}+11 x-60=0$
f) $x^{2}-18 x+80=0$
g) $x^{2}-x-72=0$
h) $x^{2}-8 x=84$

Exam Practice:

https://www.mathsgenie.co.uk/resources/86 solving-quadratics-by-factorising.pdf

Challenge:

The surface area of the cuboid is $270 \mathrm{~cm}^{2}$.
(a) Show $x^{2}+4 x-45=0$
(b) Find x.

Stewards Academy

Week 4: Rearranging Formulae

- LI: Rearrange formulae to change the subject

Demonstration Videos and Examples:

https://www.mathsgenie.co.uk/changing-the-subject1.html
https://corbettmaths.com/2013/12/23/changing-the-subject-video-7/

For each formula, rearrange it so a is by itself.

$$
\begin{array}{ccc}
a+b=9 & 5 a=b & a+2 b=5 b \\
-b \downarrow & \div 5 \downarrow \\
a=9-b & a=\frac{b}{5} & -2 b \downarrow \\
& & a=3 b \\
6-9 b=3 a & 6 b+2 a=3 a & \frac{a}{3}=b+2 \\
\div 3 \downarrow & -2 a \downarrow & \times 3 \downarrow \\
2-3 b=a & 6 b=a & a=3 b+6
\end{array}
$$

More difficult examples:

When solving equations \& rearranging formula we want a single variable, by itself, on one side of the equals sign.

When solving equations \& rearranging formula we want a single variable, by itself, on one side of the equals sign.

We want a

We want a
'by itself'

Stewards Academy

Tasks:
In each question, make x the subject of the formula.

BRONZE

1) $y=x+21$
2) $x-19=y$
3) $y=x+0.74$
4) $y=x-p$
5) $y=4 x$
6) $y=1000 x$
7) $y=\frac{x}{3}$
8) $y=\frac{x}{41}$
9) $y=-x$
10) $x+5 q=y$

GOLD

1) $y=2 x+1$
2) $y=4 x+9$
3) $12 x+3=y$
4) $6 x-8=y$
5) $y=5 x+0.3$
6) $y=\frac{x}{2}+1$
7) $y=\frac{x}{6}+7$
8) $\frac{x}{3}-1=y$
9) $y=-x+3$
10) $-\mathrm{x}-4=\mathrm{y}$

SILVER

1) $6 y=3 x$
2) $2 x=10 y$
3) $x+1=y+4$
4) $4 y=8 x$
5) $6 y=24 x$
6) $10 x=100 y$
7) $4 y=\frac{x}{3}$
8) $3 y=4 x$
9) $7 x=9 y$
10) $y=x^{2}$

PLATINUM

1) $y=x^{2}+4$
2) $y+3=x^{2}$
3) $y=(x+3)^{2}$
4) $x-2 y+4=C$
5) $3 x-9 y+6=0$

Exam Practice:

https://corbettmaths.com/wp-content/uploads/2013/02/changing-the-subject-pdf.pdf

Exam Practice Challenge:

https://www.mathsgenie.co.uk/resources/5-changing-the-subject-ws.pdf

Stew Stewards Academy

Week 5: Area

- LII: Know the various formula for finding the area of a 2D shape

Area

The space contained within a 2D shape, given by cm^{2} or m^{2}.

Area of a rectangle - width \times height
Area of a triangle $-($ width \times height $) \div 2$
Area of a parallelogram - width \times vertical height
Area of a trapezium $-\frac{1}{2}(a+b) h$
Area of a circle $-\pi r^{2}$

Demonstration Videos:

https://corbettmaths.com/2013/12/20/area-of-a-rectangle-video-45/
https://corbettmaths.com/2013/12/21/area-of-a-
parallelogram-video-44/
https://corbettmaths.com/2013/12/20/area-of-a-triangle-video-49/
https://corbettmaths.com/2012/08/02/area-of-a-
trapezium-video/
https://corbettmaths.com/2013/03/26/area-of-an-l-shape/ https://corbettmaths.com/2012/08/02/area-of-compoundshapes/
https://corbettmaths.com/2013/12/22/area-of-a-circle-video-40-and-59/

Bronze: Find the area and perimeter of the shapes below. Don't forget your units!

2.

6.

9.

13.

5.

10.

14.

3.

7.

11.

8.
12.

15.

H Stewards Academy

Silver: Find the area of the shapes below by splitting them up into shapes you know how to find the area of, then adding their areas together.

2.

3.

4.

7.

8.

Gold: Find the marked missing lengths in the shapes below.
1.

Area $=12 \mathrm{~cm}^{2}$
2.

Perimeter $=15 \mathrm{~cm}$
5.

Area $=5 \mathrm{~cm}^{2}$
6.

3.

$$
\text { Area }=24 \mathrm{~cm}^{2}
$$

7.

Area $=15 \mathrm{~cm}^{2}$
4.

Circumference $=50 \mathrm{~cm}$
8.

Perimeter $=10 \mathrm{~cm}$

Platinum: For each question below, determine if you need to find the area and perimeter of the shapes, then draw a sketch and use this to help you answer the question.

1. Farmer Giles is building a new rectangular pen for his sheep. It is 4 m long and 3 m wide. It costs $£ 5$ for 1 m of fencing and $£ 4$ for hay which covers $1 \mathrm{~m}^{2}$. How much does he need to spend in total?
2. I buy a round dining table for my kitchen and I am painting blue to match my curtains. The table is 1.2 m across at its widest point. 1 tin of paint, costing $£ 4.99$ covers $1 \mathrm{~m}^{2}$ of table. How much do I need to spend?
3. I am out for a Sunday afternoon walk. I walk 3 km East, 4 km North, then walk directly back to where I started. Calculate:
a) The area contained by my path
b) The total length I walk.

SStewards Academy

Challenges :

Two identical quarter circles are cut from a rectangle as shown.

Work out the shaded area.

A motor racing circuit consists of
two parallel straight sections, each of length 0.75 km a semicircle of diameter 0.9 km
three equal, smaller semicircles.

Not drawn

 accuratelyWork out the area of the parallelogram.

Not drawn accurately

In the diagram the area of triangle $A B D$ is $56 \mathrm{~cm}^{2}$

Work out the length of $C D$.

The length of a motor race must be greater than 305 km
What is the lowest number of full laps needed at this circuit?
You must show your working.

§Stewards Academy

Week 6: Volume

- LI: Understand that volume can be calculated by multiplying the cross-sectional area of a 3D shape by the length and solve problems involving volume of 3D shapes

Demonstration Videos:

https://corbettmaths.com/2012/08/09/volume-of-cuboids-and-cubes/ https://corbettmaths.com/2013/04/20/volume-of-a-prism/ https://corbettmaths.com/2013/03/24/volume-of-an-l-shape-prism/ https://corbettmaths.com/2013/02/15/volume-of-a-cylinder/
https://www.mathsgenie.co.uk/volume.html

Tasks:

Calculate the volume
1)

2)

3)

Calculate the volume

2)

3)

Calculate the volume
1)

2)

3)

＂Stewards Academy

Complete the table for cuboids A to \mathbf{E} ．

$\begin{aligned} & \text { 巳! } \\ & \text { E } \\ & \frac{1}{0} \end{aligned}$		$\begin{gathered} \text { M } \\ \underset{G}{E} \\ \text { o } \\ \text { on } \end{gathered}$	$\begin{aligned} & \text { ME } \\ & \sim \\ & \dot{W} \end{aligned}$		
$\begin{aligned} & \text { fy } \\ & \text { 品 } \\ & \text { 플 } \end{aligned}$	$\begin{aligned} & E \\ & \text { Un } \\ & \text { un } \end{aligned}$		$\begin{aligned} & E \\ & U \\ & 0 \\ & \text { O } \\ & \text { U } \end{aligned}$	$\underset{R}{E}$	E E O 0
	$\underset{N}{E}$	$\begin{aligned} & E \\ & E \\ & E \\ & U \end{aligned}$	$\underset{\text { E }}{ }$		E E N m
$\frac{5}{5}$	$\underset{\text { En }}{E}$	$\underset{\substack{E \\ \hline}}{\text { E }}$		$\begin{aligned} & E \\ & E \\ & \tilde{\omega} \\ & \infty \end{aligned}$	E U U N
$\begin{aligned} & \text { 믕 } \\ & \text { 艺 } \end{aligned}$	4	∞	\bigcirc	0	ш

F）These are the side lengths of cubes．G）These are the volumes of cubes．
Calculate their volumes．
$\begin{array}{ll}\text { a）} 8 \mathrm{~cm} & \text { a）} 64 \mathrm{~cm}^{3} \\ \text { b）} 5 \mathrm{~mm} & \text { b）} 125 \mathrm{~m}^{3} \\ \text { c）} 3.5 \mathrm{~m} & \text { c）} 343 \mathrm{~mm}^{3} \\ \text { d）} 0.5 \mathrm{~cm} & \text { d）} 729 \mathrm{~cm}^{3}\end{array}$

The volume of a cuboid is $64 \mathrm{~m}^{3}$ ．
Its height is twice its width．
Its length is twice its height．
What are the cuboid＇s dimensions？
区

"Stewards Academy

E) $V=$

F) $V=$

G) $V=$

H) $V=$

1) $\mathrm{V}=$
J) $V=$

K) $V=$
L) $V=$

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Question 1: Work out the volume of each cylinder.
Give each answer to one decimal place.
(a)

(b)

(c)

(d)

(e)

(f)

Exam Practice:

https://www.mathsgenie.co.uk/resources/4-volume-of-a-prism.pdf
https://www.mathsgenie.co.uk/resources/73 volume-and-surface-area-of-cylinder-ws.pdf

Stewards Academy

Week 7: Volume

- LI: Know the formula for calculating the volume of a cone, sphere and pyramid and apply this knowledge to solve problems

Demonstration Videos:

https://corbettmaths.com/2013/03/03/volume-of-a-cone/
https://corbettmaths.com/2013/03/05/volume-of-a-pyramid/
https://corbettmaths.com/2013/03/03/volume-of-a-sphere/

Tasks:

2)

3)

2) Radius $=3.5 \mathrm{~cm}$

3) Diameter $=8 \mathrm{~cm}$

2) Diameter $=18 \mathrm{~cm}$

3) Radius $=0.5 \mathrm{~cm}$

Volume of spheres and cones ($r=$ radius $d=$ diameter $h=$ height) Answer correct to $1 \mathrm{~d} . \mathrm{p}$ in cm^{3}

16.5	14.1	148.4	523.6	117.3	Sphere: $\mathrm{r}=5.3 \mathrm{~cm}$	Sphere: $\mathrm{r}=2.4 \mathrm{~cm}$	Sphere: $\mathrm{r}=4 \mathrm{~cm}$	Cone : $\mathrm{d}=7 \mathrm{~cm} \mathrm{~h}=7 \mathrm{~cm}$
120.6	14.4	72.6	463.2	34.4	Cone : $\mathrm{r}=6 \mathrm{~cm} \mathrm{~h}=9 \mathrm{~cm}$	Cone : $\mathrm{r}=5 \mathrm{~cm} \mathrm{~h}=7 \mathrm{~cm}$	Sphere: $\mathrm{r}=5 \mathrm{~cm}$	Cone : $\mathrm{d}=11 \mathrm{~cm} \mathrm{~h}=8 \mathrm{~cm}$
268.1	114.4	94.4	623.6	24.4	Cone : $\mathrm{r}=4.8 \mathrm{~cm} \mathrm{~h}=5 \mathrm{~cm}$	Sphere: $\mathrm{r}=4.8 \mathrm{~cm}$	Cone : $\mathrm{d}=9 \mathrm{~cm} \mathrm{~h}=7 \mathrm{~cm}$	Cone : $\mathrm{d}=3 \mathrm{~cm} \mathrm{~h}=7 \mathrm{~cm}$
339.3	183.3	54.4	253.4	57.9	Sphere: $\mathrm{r}=2 \mathrm{~cm}$	Sphere: $\mathrm{d}=3 \mathrm{~cm}$	Sphere: $\mathrm{r}=6 \mathrm{~cm}$	Sphere: $\mathrm{r}=1 \mathrm{~cm}$
33.5	89.8	4.2	235.3	904.8	Cone : $\mathrm{d}=6.8 \mathrm{~cm} \mathrm{~h}=6 \mathrm{~cm}$	Cone : $\mathrm{r}=5.3 \mathrm{~cm} \mathrm{~h}=8 \mathrm{~cm}$	Sphere: $\mathrm{r}=1.8 \mathrm{~cm}$	Cone : $\mathrm{r}=4 \mathrm{~cm} \mathrm{~h}=7 \mathrm{~cm}$
$\square \square \square$							MISSING VOLUME	

Calculate the volume

Volume $=126 \mathrm{~cm}^{3}$
Find x

Challenges:

Apply

Question 1: A solid is formed from a cylinder and a cone. 6 cm Find the volume of the solid.

Question 2: A solid cone is made from a material which has a density of $8.7 \mathrm{~g} / \mathrm{cm}^{3}$.
The dimensions of the cone are shown below.
Find the mass of the cone.

Question 3: The sphere and cone have an equal volume.

Find the radius of the sphere.

Question 1: A metal cuboid measuring 4 cm by 5 cm by 12 cm is melted down and a sphere is made.
Calculate the radius of the sphere.
Question 2: Calculate the volume of a hemisphere with base of radius 8 cm .

Question 3: A solid sphere fits perfectly inside of a cube box of side length 10 cm .
What percentage of the box is empty?
Question 4: A ball of gold has a radius of 9 cm .
The density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$.
Work out the mass of the ball.

Assessment Ladder

