Maths Summer 2

Year 10 Higher

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 10 Overview
Page 4: Knowledge Organiser
Page 5-10: Week 1 - Coordinate Geometry
Page 11-18: Week 2 - Linear Graphs
Page 18-24: Week 3 - Linear \& Quadratic Graphs
Page 25-31: Week 4 - Cubic \& Reciprocal Graphs, Transformations
Page 32 - 40: Week 5 - Transformations
Page 41 - 46: Week 6 - Transformations, Sectors and Arcs
Page 47: Assessment Ladder

S Stewards Academy

"Stewards Academy

S Stewards Academy

Week 1:

- LI: I can find the midpoint of a line segment

Demonstration Videos:

http://corbettmaths.com/2013/04/15/midpoint-of-a-line/

Tasks:

Question 1: Find the coordinates of the midpoints of the following line segments.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the coordinates of the midpoints of the following line segments.
(a)

(b)

(c)

(d)

(e)

(f)

Question 3: Find the midpoint of the line joining these pairs of points
(a) $(2,4)$ and $(6,10)$
(b) $(1,4)$ and $(9,12)$
(c) $(0,7)$ and $(6,1)$
(d) $(-5,2)$ and $(5,-4)$
(e) $(-3,9)$ and $(7,-1)$
(f) $(0,-4)$ and $(9,0)$
(g) $(-10,-6)$ and $(-2,8)$
(h) $(0,5)$ and $(-11,-10)$
(i) $(9,8)$ and $(4,8)$

Question 4: $\quad M$ is the midpoint of $P Q$ in each diagram below. Find the coordinates of Q in each diagram.
(a)

(b)

(c)

Question 5: $\quad M$ is the midpoint of $P Q$ in each diagram below. Find the coordinates of Q in each diagram.
(a)

(b)

(c)

Stewards Academy

Week 1:

- LI: I can find the length of a line segment

Demonstration Videos:

http://corbettmaths.com/2013/05/03/distance-between-two-coordinates/

Tasks:

Question 1: Calculate the length of the line joining the points A and B.
(a)

(b)

(c)

Question 2: Calculate the length of the line joining the points A and B.
(a)

(b)

(c)

Question 3: Calculate the length of the line joining the point A and B.
(a)

(b)

(c)

SStewards Academy

Question 4: Calculate the length of the line joining the points A and B
(a)

(b)

(c)

Question 5: Calculate the distance between the following pairs of coordinates
(a) $(5,1)$ and $(9,6)$
(b) $(1,4)$ and $(10,10)$
(c) $(0,0)$ and $(6,8)$
(d) $(2.5,3)$ and $(8,0)$
(e) $(-6,2)$ and $(8,3)$
(f) $(-5,-9)$ and $(-3,8)$
(g) $(-5,7)$ and $(-3,-2)$
(h) $(-9,-9)$ and $(3,-20)$
(i) $(-4,0)$ and $(0,-4)$

Apply

Question 1: Calculate the perimeter of triangle ABC.

Question 2: The distance between the points $(1,2)$ and $(16, p)$ is 17 .
Find the possible values of p.

Question 3: The distance between the points $(-3,-4)$ and $(q, 5)$ is 15 .
Find the possible values of q.
Find the lengths of the line segments joining the two points given in each question. Leave your answers in surd form where appropriate.
a) $(1,7)$ and $(2,8)$
f) $(-11,14)$ and (-6, 2)
b) $(1,9)$ and $(2,8)$
g) $(5,-5)$ and (3, -11)
c) $(2,12)$ and $(3,17)$
h) $(5,-14)$ and (-3, -8)
d) $(5,8)$ and $(9,2)$
i) (-7, -1) and (1, 5)
e) $(11,14)$ and $(6,2)$
j) (-3, -17) and (-6, -6)

Stewards Academy

Week 1:

- LI: I can solve geometric problems on a coordinate grid

Demonstration Videos:

https://corbettmaths.com/2013/04/15/coordinates-and-shapes/

Tasks:

Three points are shown on a grid. ABCD is a rectangle.
(a) Plot D
(b) Write down the coordinates of the point D

Two points are shown on a grid ABC is an isosceles triangle.
(a) Plot C
(b) Write down the coordinates of the point C

find the missing coordinates of the given shapes (i)
(1) a square

(2) a rectangle

(3) a parallelogram

(4) a rhombus
(5) an isosceles trapezium
(6) an isosceles trapezium

(7) a rhombus

(10) a rectangle

(8) a square

(11) a rhombus

(9) a parallelogram

(12) a square

A pattern is made from four identical squares.

The sides of the squares are parallel to the axes.

Point A has the coordinates $(4,5)$
Point B has the coordinates $(32,21)$
Point C is marked on the diagram.

Work out the coordinates of Point C.

"Stewards Academy

Week 2:

- LI: I can find the gradient of a line segment

Demonstration Videos:

http://corbettmaths.com/2013/05/15/gradient-of-a-line/
http://corbettmaths.com/2013/05/28/gradient-between-two-points/

Tasks:

Question 1: Find the gradient of each of these lines

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Stewards Academy

Question 2: Draw lines with the following gradients
(a) 2
(b) 4
(c) 7
(d) -1
(e) -3
(f) -5
(g) $\frac{1}{2}$
(h) 10

Question 6: Find the gradient of each line shown below
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Question 7: Work out the gradient of the line passing through these pairs of points
(a) $(1,4)$ and $(3,10)$
(b) $(0,0)$ and $(3,12)$
(c) $(5,-2)$ and $(9,14)$
(d) $(-8,6)$ and $(0,-2)$
(e) $(-5,-9)$ and $(1,3)$
(f) $(-7,-2)$ and $(1,-4)$
(g) $(-2,1)$ and $(8,-7)$
(h) $(-2,9)$ and $(4,7)$
(i) $(-4.5,3)$ and $(6,-7.5)$

Stewards Academy

Week 2:

- LI: I can plot a linear graph

Demonstration Videos:

http://corbettmaths.com/2012/12/23/drawing-graphs-using-xy-tables/
http://corbettmaths.com/2013/04/20/drawing-graphs-using-gradient-and-intercept/

Tasks:

Question 1: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .
(a) $y=2 x+1$

x	-1	0	1	2	3
y	-1	1			7

(b) $y=3 x-1$

x	-1	0	1	2	3
y	-4			5	

(c) $y=2 x-3$

x	-1	0	1	2	3
y		-3	-1		

(d) $y=x+4$

x	-1	0	1	2	3
y					7

(e) $y=2 x$

x	-1	0	1	2	3
y		0			6

Question 2: For each equation, complete the table of values and draw its graph for values of x from -2 to 3 .
(a) $y=2 x+4$

\mathbf{x}	-2	-1	0	1	2	3
\mathbf{y}						

(b) $y=4 x-2$

x	-2	-1	0	1	2	3
y						

(c) CORBETTMATHS 2019

Stewards Academy

Question 3: For each equation, complete the table of values and draw its graph for values of x from -2 to 2 .
(a) $y=3 x+3$

\mathbf{x}	-2	-1	0	1	2
y					

(b) $\mathrm{y}=\mathrm{x}+9$

x	-2	-1	0	1	2
y					

(c) $\mathrm{y}=\mathrm{x}-2$

x	-2	-1	0	1	2
y					

(d) $y=x$

x	-2	-1	0	1	2
y					

Question 4: For each equation, complete the table of values and draw its graph for values of x from -2 to 4 .
(a) $y=\frac{1}{2} x+1$

x	-2	-1	0	1	2	3	4
y							

(b) $\quad y=\frac{1}{4} x+5$

x	-2	-1	0	1	2	3	4
\mathbf{y}							

(c) $\quad y=\frac{1}{3} x+1$

\mathbf{x}	-2	-1	0	1	2	3	4
\mathbf{y}							

Stewards Academy

Question 5: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .
(a) $y=-2 x+5$

\mathbf{x}	-1	0	1	2	3
\mathbf{y}					

(b) $y=-x-2$

x	-1	0	1	2	3
y					

(c) $y=-2 x$

\mathbf{x}	-1	0	1	2	3
\mathbf{y}					

(d) $y=6-x$

x	-1	0	1	2	3
y					

Question 6: For each equation, complete the table of values and draw its graph for values of x from -1 to 3 .
(a) $x+y=3$

\mathbf{x}	-1	0	1	2	3
\mathbf{y}					

(b) $2 x+y=4$

x	-1	0	1	2	3
y					

(c) $x+2 y=-2$

x	-1	0	1	2	3
y					

(d) $2 x-y=4$

x	-1	0	1	2	3
y					

Stewards Academy

Week 2:

- LI: I can plot graphs of the form $x=a$ and $y=a$

Demonstration Videos:

https://corbettmaths.com/wp-content/uploads/2013/02/drawing-linear-graphs-pdf.pdf
http://corbettmaths.com/2013/05/29/y-equals-graphs/

Tasks:

Question 1: Draw the following graphs
(a) $x=1$
(b) $x=4$
(c) $\mathrm{x}=-2$
(d) $x=1.5$

Question 2: Write down the equations of each of the lines shown below
(a)

(b)

(c)

Question 3: Draw the following graphs
(a) $y=2$
(b) $\mathrm{y}=-1$
(c) $y=-4$
(d) $y=0.5$

Question 4: Write down the equations of each of the lines shown below
(a)

(b)

(c)

© Stewards Academy

Apply

Question 1: On a copy of the grid shown
(a) draw $y=5$
(b) draw $x=4$
(c) Write down where the two lines meet.

Question 2: Write down the equation of
(a) Line 1
(b) Line 2
(c) Line 3

Question 3: From the box below, choose any coordinates that lie on:
(a) $y=2$
(b) $x=4$
(c) $\mathrm{x}=3$
(d) $y=-1$
(e) the x-axis
(f) the y-axis
$(2,3) \quad(6,0)$
$(5,-6)$
(4, -1)
$(0,5)$

Question 4: Michael has completed his homework Can you spot any mistakes?

Week 3:

- LI: I can identify an equation from its graph

Demonstration Videos:

https://corbettmaths.com/2013/05/29/finding-the-equation-of-a-straight-line/
https://corbettmaths.com/2013/05/29/finding-the-equation-passing-through-two-points/

$y=\mathrm{M}_{\boldsymbol{\prime}} \mathrm{X}+\mathrm{C}$ gradient y-intersect

Tasks:
Question 1: Write down the gradient of each of these lines.
(a) $y=3 x+1$
(b) $y=2 x-5$
(c) $y=7 x+4$
(d) $y=10 x+5$
(e) $y=x-2$
(f) $y=6 x$
(g) $y=-4 x+3$
(h) $y=-3 x-7$
(i) $y=\frac{1}{2} x+3$
(j) $y=-\frac{4}{5} x-9$

Question 2: Write down where each of these lines cross the y-axis (y-intercept)
(a) $y=2 x+3$
(b) $y=7 x+1$
(c) $y=3 x-2$
(d) $y=x-5$
(e) $y=2 x$
(f) $y=-4 x+6$
(g) $y=-5 x-3$
(h) $y=-3 x$
(i) $y=\frac{4}{3} x+\frac{2}{5}$
(j) $y=-\frac{2}{3} x-\frac{1}{2}$

Question 3: Write down the equation of the lines below
(a) gradient of 3 and y-intercept of 6
(b) gradient of 2 and y-intercept of -1
(c) gradient of -4 and y-intercept of 3
(d) gradient of 8 and y-intercept of 4
(e) gradient of 1 and passing though $(0,4)$
(f) passing through $(0,-2)$ with gradient 4
(g) gradient of -5 and passing through the origin.

"Stewards Academy

Question 5: Find the equation of each line

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(1)

Stes Stewards Academy

Question 6: Find the equation of each line below.
(a)

(d)

(b)

(e)

(c)

(f)

Question 7: Find the equation of the straight line that passes through the points
(a) $(0,3)$ and $(4,19)$
(b) $(0,2)$ and $(6,20)$
(c) $(0,0)$ and $(1,4)$
(d) $(0,-9)$ and $(9,0)$
(e) $(0,-6)$ and $(7,8)$
(f) $(-8,-10)$ and $(0,14)$
(g) $(0,2)$ and $(10,7)$
(h) $(-4,1)$ and $(0,7)$
(i) $(-4,0)$ and $(0,18)$

Question 8: Find the equation of the straight line that:
(a) has a gradient of 4 and passes through the point $(1,10)$
(b) has a gradient of 2 and passes through the point $(-3,3)$
(c) has a gradient of 1 and passes through the point $(5,2)$
(d) has a gradient of -3 and passes through the point $(-2,8)$
(e) has a gradient of -5 and passes through the point $(3,-1)$
(f) has a gradient of $1 / 2$ and passes through the point $(4,5)$
(g) has a gradient of $2 / 5$ and passes through the point $(-5,-5)$
(h) has a gradient of $-2 / 3$ and passes through the point $(9,15)$

Stewards Academy

Week 3:

- LI: I can plot a quadratic graph

Demonstration Videos:

http://corbettmaths.com/2013/06/23/drawing-quadratics/

Tasks:

Complete the table of values for $y=x^{2}$

\mathbf{x}	-2	-1	0	1	2
\mathbf{y}		1			4

Complete the table of values for $y=x^{2}+3$

\mathbf{x}	-2	-1	0	1	2
\mathbf{y}	7		3	4	

Complete the table of values for $y=8-x^{2}$

\mathbf{x}	-2	-1	0	1	2	3
\mathbf{y}						

Complete the table of values for $y=x^{2}+x-6$
©
(1)
(a) On the grid draw the graph of $y=x^{2}+x-6$ for values of x from -3 to 3

SStewards Academy

©
4

(a)

Stewards Academy

Week 3:

- LI: I can find solutions to a quadratic equation using a graph

Demonstration Videos:

https://corbettmaths.com/2017/12/13/solving-quadratics-graphically/

Tasks:

Question 1: Using the graphs below, solve each equation.

$$
y=x^{2}-x-12
$$

$y=x^{2}-4 x+3$

(a) Solve $x^{2}-x-12=0$
(b) Solve $x^{2}-4 x+3=0$
(c) Solve $\mathrm{x}^{2}+7 \mathrm{x}=0$

Question 2: Using the graphs below, solve each equation

$$
y=2 x^{2}-3 x-2
$$

(a) Solve $2 x^{2}-3 x-2=0$
(b) Solve $2 x^{2}-13 x+15=0$
(c) Solve $4 x^{2}+11 x+7=0$

$$
y=4 x^{2}+11 x+7
$$

Question 3: Using the graphs, find estimates of the solutions to the following equations

(a) $\mathrm{x}^{2}-7 \mathrm{x}+5=0$
(b) $\mathrm{x}^{2}+\mathrm{x}-1=0$
(c) $\mathrm{x}^{2}-2 \mathrm{x}-13=0$

"Stewards Academy

Stewards Academy

Week 4:

- LI: I can plot a cubic graph

Demonstration Videos:

https://corbettmaths.com/2016/08/07/cubic-graphs/

Tasks:

Complete the table of values for $y=x^{3}+x-2$

x	-2	-1	0	1	2
y					

Complete the table of values for $y=x^{3}+3 x$

x	-2	-1	0	1	2
y					

$\dot{-}$

\$ Stewards Academy

Stewards Academy

Week 4:

- LI: I can plot a reciprocal graph

Demonstration Videos:

http://corbettmaths.com/2013/10/24/reciprocal-graphs/

Tasks:

1. (a) Complete the table of value for $y=\frac{4}{x}$

x	0.5	1	2	4	8	10
y						

2. Complete the table of values for $y=\frac{5}{x}$

x	0.5	1	2	4	8	10
y						

"Stewards Academy

S Stewards Academy

Week 4:

- LI: I can perform translations and rotations on a coordinate grid

Demonstration Videos:

http://corbettmaths.com/2012/08/10/transformations-translations/
http://corbettmaths.com/2013/05/19/rotations/

Tasks:

Question 1: Translate each of the shapes below as instructed.
(a)

Translate A by $\binom{3}{1}$
(d)

(b)

Translate B by $\binom{2}{-2}$
(e)

(c)

Translate C by $\binom{0}{-5}$

Translate F by $\binom{1.5}{0}$

Question 2: Describe fully each translation that takes shape A to shape B
(a)

(b)

(c)

S Stewards Academy

Question 1: Rotate each of the shapes below as instructed, using P as the centre of rotation.
(a)

rotate 90° clockwise about P
(d)

rotate 180° about P
(g)

rotate 90° clockwise about P
(b)

rotate 90° anticlockwise about P
(e)

rotate 90° anticlockwise about P
(h)

rotate 270° clockwise about P
(c)

rotate 90° clockwise about P
(f)

rotate 180° about P
(i)

rotate 270° anticlockwise about P

Question 3: Rotate each of the shapes below as instructed.
(a)

rotate 90° anticlockwise about $(0,1)$
(b)

rotate 90° clockwise about ($-1,-2$)
(c)

rotate 180° about $(1,1)$
(d)

rotate 90° anticlockwise about ($-4,0$)
(e)

rotate 180° about $(-1,0)$
(f)

rotate 90° clockwise about ($-1,2$)

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(d)

(e)

(f)

S Stewards Academy

Week 5:

- LI: I can perform reflections on a coordinate grid

Demonstration Videos:

http://corbettmaths.com/2012/08/19/reflections/

Tasks:

Question 1: Reflect each shape in the mirror line given
(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

"S. Stewards Academy

Question 2: Reflect each shape in the mirror line given
(a)

(d)

(b)

(e)

(c)

(f)

Question 3: Find the mirror line for each of the reflections below.
(a)

(d)

(b)

(e)

(c)

(f)

Stewards Academy

Question 6:
(a)

Reflect shape A in the line $y=x$

(b)

Reflect shape B in the line $y=-x$

(c)

Reflect shape C in the line $y=x$

Question 7: Describe fully the single transformation that takes shape A to shape B.
(a)

(d)

(b)

(e)

(c)

(f)

S Stewards Academy

Week 5:

- LI: I can enlarge a shape on a coordinate grid

Demonstration Videos:

http://corbettmaths.com/2012/08/19/enlargements/
http://corbettmaths.com/2013/05/12/describing-enlargements/
http://corbettmaths.com/2013/03/29/finding-the-centre-of-enlargement/

Tasks:

Question 1: Copy these shapes and then enlarge by the scale factor given.
(a)

(d)

(b)

(e)

(c)

(f)

Question 4: Shown below is an object and its enlargement. For each, write down the scale factor of enlargement.
(a)

(b)

"Stewards Academy

Question 2: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

Enlarge by scale factor 2
(c)

Enlarge by scale factor 3
(b)

Enlarge by scale factor 3
(d)

Enlarge by scale factor 2

Stewards Academy

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(c)

(b)

(d)

Question 1: Shown is a rectangle drawn on a centimetre squared grid.
(a) Find the area of the rectangle.
(b) Enlarge the rectangle by scale factor 2 on centimetre squared paper.
(c) Find the area of the enlarged rectangle.

(d) How many times larger is the area of the enlarged rectangle than the original?

Stewards Academy

Week 5:

- LI: I can enlarge a shape on a coordinate grid using a fractional scale factor

Demonstration Videos:

http://corbettmaths.com/2013/03/31/enlargments-fraction/

Tasks:

Question 1: Copy these shapes and then enlarge by the scale factor given.
(a)

Enlarge by scale factor $\frac{1}{2}$
(b)

Enlarge by scale factor $\frac{1}{3}$
(c)

Enlarge by scale factor $\frac{2}{3}$

Question 2: Copy these shapes and then enlarge by the scale factor given.
(a)

Enlarge by scale factor $\frac{1}{4}$
(b)

Enlarge by scale factor $\frac{1}{2}$
(c)

Enlarge by scale factor $1 \frac{1}{3}$

Question 3: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

(b)

Enlarge by scale factor $\frac{1}{3}$
(c)

[^0]
Stewards Academy

Question 4: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

Enlarge by scale factor $\frac{1}{4}$

(b)

Enlarge by scale factor $\frac{1}{2}$

Question 5: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.
(a)

Enlarge by scale factor $\frac{1}{2}$ using $(0,1)$ as the centre of enlargement
(b)

Enlarge by scale factor $\frac{1}{3}$ using $(-3,1)$ as the centre of enlargement

Stewards Academy

Question 6: Describe fully the single transformation that takes shape A to shape B.
(a)

(c)

(b)

(d)

Jack writes:

Shape B is an enlargement of A by a scale factor 1.5 , because each side gets 1.5 times longer.

Shape A is therefore an enlargement of B by scale factor 0.5.

Stewards Academy

Week 6:

- LI: I can enlarge a shape on a coordinate grid using a negative scale factor

Demonstration Videos:

http://corbettmaths.com/2013/04/24/enlargements-with-negative-scale-factor/

Tasks:

Question 1: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

Enlarge by scale factor - 3
(d)

Enlarge by scale factor -2
(b)

Enlarge by scale factor -2
(e)

Enlarge by scale factor -2
(c)

Enlarge by scale factor -4
(f)

Enlarge by scale factor $-\frac{1}{2}$

Question 2: Enlarge each shape by the scale factor given Use P as the centre of enlargement.
(a)

© COI Enlarge by scale factor -3
(b)

Enlarge by scale factor -4

Stewards Academy

Question 3: Enlarge each shape by the scale factor given The coordinates for each centre of enlargement are given.
(a)

Enlarge by scale factor -2 using $(0,0)$ as the centre of enlargement
(c)

Enlarge by scale factor - 4 using
$(-3,-1)$ as the centre of enlargement
(b)

Enlarge by scale factor -2 using $(2,2)$ as the centre of enlargement
(d)

Enlarge by scale factor $-\frac{1}{2}$ using
$(0,-2)$ as the centre of enlargement

Question 4: Describe fully the single transformation that takes shape A to shape B.
(a)

(b)

Stewards Academy

Week 6:

- LI: I can calculate the area of a sector

Demonstration Videos:

http://corbettmaths.com/2012/08/02/area-of-a-sector-video/

Tasks:

Question 1: Calculate the area of each of the following sectors.
Give each answer to one decimal place and include units.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Question 2: Calculate the area of each of these sectors.
Give each answer to 2 decimal places and include suitable units.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Question 3: Find the area of these sectors.
Leave your answer in terms of $\boldsymbol{\pi}$
(a)

(b)

(c)

(d)

(e)

(f)

The diagram shows a sector of a circle.

The area of the sector is $14 \pi \mathrm{~cm}^{2}$.
Find the angle x.

Stewards Academy

Week 6:

- LI: I can calculate the length of an arc

Demonstration Videos:

http://corbettmaths.com/2013/03/26/arc-length/

Tasks:

Question 1: For each sector below, calculate the length of the arc.
Give your answers to one decimal place and include suitable units.
(a)

(b)

(c)

(d)

Question 2: For each sector below, calculate the length of the arc.
Give your answers to one decimal place and include suitable units.
(a)

(b)

(c)

(d)

Question 3: For each sector below, calculate the length of the arc.
Leave your answer in terms of π
(a)

(b)

(c)

(d)

Question 4: Calculate the perimeter of each sector below Give your answers to one decimal place and include suitable units.
(a)

(b)

(c)

(d)

Stew Stewards Academy

Question 5: Calculate the perimeter of each sector below Leave your answer in terms of π
(a)

(b)

(c)

(d)

Question 6: The arc length of each sector has been given.
Calculate x
Give your answers to one decimal place and include suitable units.
(a)
(b)

Arc Length $=85.2 \mathrm{~cm}$
(c)

Arc Length $=9 \mathrm{~cm}$

Question 7: The arc length of each sector has been given. Calculate x
(a)
Arc Length $=15 \pi \mathrm{~cm}$

(b)

Arc Length $=6 \pi \mathrm{~cm}$

(c)
Arc Length $=10 \pi \mathrm{~cm}$

Question 8: The arc length of each sector has been given.
Calculate the size of the angle
Give your answers to one decimal place.
(a) Arc Length $=56 \mathrm{~cm}$

(b) Arc Length $=1.8 \mathrm{~m}$

(c) Arc Length $=41 \mathrm{~cm}$

Matht Assement Ladder
H10 Unit 6 Higher Summer 2

Questions	Question Title
1	Writing indualities from mumber lines
2	Writing a percentage as a ratio
3	Finding the nth term of a linear sequence
4	Lines parallel to the y-axis
5	Expanding double brackets
6	Square numbers and powers
7	Median of erouped data
8	Multi-step angle problems
9 a	Changing the subject of a formula
9h	Units of speed and acceleration
10	Construeting locus of points equidistant from two points
11 a	Completing a frequency tree
11b	Reverse percentages
12 a	Cavculating time given speed and distance
12b	The effect of speed on time
13	Drawing a box plat
14a/b	Venn diagrams for probability
15	Highest comman foctar of expressions
16	Sulatituting into functions
17	Sharing in a ratio
18	Expanding brackets and simplifying
19	Alterrate segment theorem
20	Percentage increase and decrease, writing inequalities
21	Prime factor decomposition, index rules
22	Cosine rule
23	Representing inequalities on a graph
24	Rastio problems
25	Instantaneous rate of change
26	Prime numbers problem solving
27	3D trigonometry
28	Exponential decay
29	Quadratic inequalities on a graph
30	Evaluating composite functions

[^0]: Enlarge by scale factor $\frac{2}{3}$

