Maths Summer 2

Year 9

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 9 Overview
Page 4: Knowledge Organiser
Page 5-10: Week 1 - Enlargement
Page 11-16: Week 2 - Similar Triangles
Page 17-22: Week 3 - Translation and Reflection
Page 23-28: Week 4 - Rotation
Page 29-30-: Week 5 - Finding trigonometric ratios
Page 31-35: Week 6 - Using trigonometric ratios
Page 36: Assessment Ladder

"Stewards Academy

§Stewards Academy

Stewards Academy

Week 1:

- LI: I can enlarge shapes from a given centre with coordinate grids
- LI: I can enlarge shapes from a given centre without coordinate grids

Demonstration Videos:

Enlargements - https://corbettmaths.com/2012/08/19/enlargements/

Tasks:

Task 1

Task 2

Draw separate enlargements of this shape using scale factor:

(a) 2
(b) 3
(c) 1
(d) $\frac{1}{2}$
(e) 1.5

(S Stewards Academy

Task 3

§Stewards Academy

Task 4

Task 5

Positive Enlargements

1) Enlarge shape \mathbf{A} by a scale factor of 2. Label the new shape \mathbf{A}^{\prime}
Enlarge shape \mathbf{B} by a scale factor of 3 .
Label the new shape \mathbf{B}^{\prime}

2) Describe the enlargement from shape E to E^{\prime}.

5)

Enlarge shape \mathbf{F} by a scale factor of 2 , from centre of enlargement $(5,11)$. Label the new shape F^{\prime}.
Enlarge shape C by a scale factor of 2 , from centre of enlargement $(2,1)$.
2) Label the new shape \mathbf{C}^{\prime}.

One of the new vertices has been done for you.

Enlarge shape \mathbf{D} by a scale factor of 3, from centre of enlargement $(2,10)$
Label the new shape D^{\prime}.

6)

§Stewards Academy

Task 6

Task 7

Question 2: Copy these shapes and then enlarge by the scale factor given.
(a)

Enlarge by scale factor 2
(d)

(b)

(e)

(c)

Enlarge by scale factor 2
(f)

SStewards Academy

Task 8

Question 4: Shown below is an object and its enlargement.
For each, write down the scale factor of enlargement.
(a)

(c)

(b)

(d)

Task 9

Describing Enlargements. Find the centre of enlargement and the scale factor for each.

Stewards Academy

Task 10

Question 1: Shown is a rectangle drawn on a centimetre squared grid.
(a) Find the area of the rectangle.
(b) Enlarge the rectangle by scale factor 2 on centimetre squared paper.
(c) Find the area of the enlarged rectangle.

(d) How many times larger is the area of the enlarged rectangle than the original?

Question 2: Shown is a triangle drawn on a centimetre squared grid.
(a) Find the area of the triangle.
(b) Enlarge the triangle by scale factor 3 on centimetre squared paper.
(c) Find the area of the enlarged triangle.

(d) How many times larger is the area of the enlarged triangle than the original?

Question 3: Shown is a shape drawn on a centimetre squared grid.
Reg is going to enlarge the shape by scale factor 5 .
(a) Without enlarging the shape, can you predict what the area of the enlarged shape will be?
(b) Enlarge the shape by scale factor 5 and check your
 prediction.

Task 11

GCSE - AQA Foundation: November 2017 Paper 2, Q24
1 Describe fully the single transformation that maps triangle A to triangle B.

Stewards Academy

Week 2:

- LII: I can understand that the corresponding angles of similar shapes are equal
- LI: I can solve problems involving similar triangles

Demonstration Videos:

https://www.youtube.com/watch?v=6IVyQy9F3kU

Task 1

Task 2

Q1 Label the angles that are the same on both triangles. Use the letters a, b and c. Label the identical lengths on the bigger triangle that match the sides on the smaller triangle. Use the labels A^{\prime}, B^{\prime}, and C^{\prime}.

Q2 Label the identical lengths on the smaller triangle that match the sides on the bigger triangle. Use the labels A^{\prime}, B^{\prime}, and C^{\prime}.

Q3 Label the sides on the bigger triangle that match the sides on the smaller triangle. Use the labels A^{\prime}, B^{\prime} and C^{\prime}.

S Stewards Academy

Task 3

Q1 These two triangles are similar. Calculate the missing length and angle x

Q2 These two triangles are similar. Calculale the missing length and angle x
(1)

Task 4

01

Triangles ACE and ECD are similar. AB = $8 \mathrm{~cm}, \mathrm{BC}=16 \mathrm{~cm}$ and $\mathrm{BD}=7 \mathrm{~cm}$

Find length AE

Task 5

Q1

Triangles ABC and BDE are similar. $\mathrm{AC}=31.5 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$ and $\mathrm{DE}=9 \mathrm{~cm}$

Find length $B C$

Q2
Triangles ABC and BDE are similar. $A B=8 \mathrm{~cm}, B D=12 \mathrm{~cm}$ and $B E=10.5 \mathrm{~cm}$

Find length $B C$

Task 6

$A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}, B D=10.5 \mathrm{~cm}$ and $B E=7 \mathrm{~cm}$
Prove that triangles $A B C$ and $B D E$ are similar.

S Stewards Academy

Task 7

Task 8

GCSE - AQA Foundation: June 2017 Paper 3, Q16 Triangles $A B C$ and $D E F$ are similar.

1 (a) Work out the value of x.

Answer

1 (b) Write down the size of angle y.
Answer

GCSE - AQA Higher: May 2017 Paper 1, Q22

$1 \quad A B C$ and $X Y C$ are similar triangles.

Circle your answer.
$\frac{B Y}{Y C}$
$\frac{A B}{X Y}$
$\frac{B C}{Y C}$
$\frac{X Y}{A B}$

Stewards Academy

Task 9

Triangle ABC and DEF are similar.

a) Triangle DEF is an enlargement of triangle ABC.

What is the scale factor of this enlargement?
b) Work out the length of the side EF.
c) What is the length of the side AC ?

Task 10

In the diagram, BC is parallel to DE .

a) Explain why triangle ABC is similar to ADE
\qquad
\qquad
b) Find the length $C E$

Task 11

a) Explain why triangle MNO is similar to triangle ABO .
\qquad
\qquad
b) Calculate the length of OM
c) Calculate the length of OB

Task 12

$\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ and $\triangle \mathrm{GHI}$.

Not drawn to scale

a) What is the scale factor that AC is multiplied by to give DF ?
b) What is the scale factor that the area of $\triangle \mathrm{ABC}$ is multiplied by to give the area of $\triangle \mathrm{DEF}$?
c) What are the areas of $\triangle \mathrm{DEF}$ and $\Delta \mathrm{GHI}$?

Stewards Academy

Week 3:

- LI: I can translate a shape by a given vector
- LI: I can reflect a shape in a line, including on coordinate axes

Demonstration Videos:

https://corbettmaths.com/2012/08/10/transformations-translations/ https://corbettmaths.com/2012/08/19/reflections/

Concept corner

A translation is a transformation for which every point on an object is moved by the same amount in the same direction.

Here every point has been moved 6 units to the right and 4 units up. The translation is described by the vector

Task 1

Draw the quadrilateral $(1,2),(1,4),(0,3)$ and $(4,3)$.
Label this quadrilateral A.

a) Translate quadrilateral A along by vector $\binom{3}{4}$. Label this quadrilateral B.
b) Write down the coordinates of the vertices of quadrilateral B.

Stewards Academy

Task 2

Task 3

Object A is translated to give the shapes B, C, D and E.
What is the column vector that describes the translations from:
a) A to B
b) B to C
c) A to C
d) A to D

Task 4

Draw the quadrilateral $(4,2),(4,4),(2,3)$ and $(5,3)$.
Label this quadrilateral A.

Translate the quadrilateral A along by vector:
a) $\binom{2}{2}$, to obtain B,
b) $\binom{2}{-2}$, to obtain C ,
c) $\binom{-2}{2}$, to obtain D,
d) $\binom{-2}{-2}$, to obtain E.

Stewards Academy

Task 5

Write down the column vector needed to translate the shape A to each of the other shapes:

Task 6

(a) Rotate trapezium $\mathbf{F} 180^{\circ}$ about the origin Label the new trapezium A
$\left.\begin{array}{l}\text { (b) Translate trapezium } \mathbf{F} \text { by the vector }\binom{-3}{\text { Label the new trapezium } \mathbf{B} \text {. }} \\ -2\end{array}\right)$

GCSE-AQA Higher: May 2018 Paper 1, Q2
1 The vector $\binom{4}{-3}$ translates A to B.
Circle the vector that translates B to A.
[1 mark]
$\binom{-3}{4}$
$\binom{4}{-3}$
$\binom{-4}{3}$
$\binom{4}{-3}$

2 The vector $\binom{-5}{0}$ translates A to B.
Circle the vector that translates B to A.
$\binom{0}{5}$
$\binom{0}{-5}$
$\binom{-5}{0}$
$\binom{5}{0}$

§Stewards Academy

Concept corner
When an object is transformed by a reflection the object and its image are always the same perpendicular distance from the mirror line.

Task 7

Draw the reflection of each of the following shapes in the mirror line:

Mirror line

Mirror line

Task 8
Transformations: Reflection

\$ Stewards Academy

Task 9

2 Drinw the reflection of each of the following shapes in the mirror line:

Stewards Academy

Week 4:

- LII: : I can rotate a shape about a centre, including on coordinate axes
- LII: I can identify the type of transformation carried out by comparing an object and image
-

Demonstration Videos:

https://corbettmaths.com/2013/05/19/rotations/
https://www.mathsgenie.co.uk/transformations.html

Tasks:

Concept corner

Rotations are obtained when you turn a figure about a given point, called the centre of rotation.

The centre of rotation can be inside the figure or anywhere outside it.

Task 1

Rotate each of the shapes below 90° clockwise about the origin, coordinates $(0,0)$.

What is the same and what is different about the two questions?

S Stewards Academy

Task 2

(1)

Rotate shape C
90° anticlockwise about
(-5, 3).
Label the new shape \mathbf{C}^{\prime}

Task 3

GCSE - AQA Foundation: May 2018 Paper 1, Q21

1 (a) Reflect the triangle in the line $y=-1$

[2 marks]
教

*S Stewards Academy
Task 4

§Stewards Academy

Task 5

10. Find the centre of rotation in each of the following diagrams.

Task 6

Stewards Academy

Task 1

a) Translate the object by the vector $\binom{7}{-1}$
b) Rotate the object 180° around the point $(2,5)$
c) Reflect the object in the line $y=4$
d) Enlarge the object by scale factor 2 from centre $(1,0)$

Task 2

Describing Transformations

1. Describe fully the single transformation which maps Shape A onto Shape B.

2. Describe fully the single transformation which maps Shape A onto Shape B.

3. Describe fully the single transformation which maps Shape A onto Shape B.

4. Describe fully the single transformation which maps Shape A cento Shape B.

(Total 3 marks)

SStewards Academy

Task 3

A $(2,1)$ 1) Translated $\binom{3}{4}$ \downarrow 2) Reflected in the line $x=0$	B $(3,4)$ \downarrow $(3,4)$	1) Translated $\binom{3}{-4}$ 2) Translated $\binom{4}{-3}$
C $(3,-2)$ 1) Reflected in the line $y=0$ $(0,2)$ 2) Reflected in the line $x=1$		1) Rotated 90° clockwise about the origin 2) Reflected in the line $x=-1$
E $(6,2)$ 1) Rotated 180° about the origin $(-5,-4)$ 2) Reflected in the line $y=-3$	$\begin{array}{\|cc} \hline \text { F } & (1,3) \\ & \downarrow \\ & (-1,3) \end{array}$	1) Translated $\binom{-4}{-4}$ 2) Rotated 90° anticlockwise about the origin
G $\quad(-3,-6)$ 1) Rotated 90° clockwise about the origin $(0,-1)$ 2) Translated $\binom{6}{-4}$	$\begin{array}{cc} \mathrm{H} & (-5,-5) \\ \downarrow \\ & (-4,-4) \end{array}$	1) Reflected in the line $x=-4$ 2) Reflected in the line $y=x$
$1 \quad(4,0)$ 1) Reflected in the line $y=x$ 2) Reflected in the line $x=-1.5$ $(-4,-4)$	$\begin{array}{cc} \text { J } & (-4,5) \\ \downarrow \\ & (-5,-6) \end{array}$	1) Rotated 90° clockwise about $(1,1)$ 2) Reflected in the line $y=-x$

Task 4

Describing Transformations

	Description of the transformation		
A to B			
A to C			
A to D			
A to F			
B to C		\quad	
:---			
A to E			

Stewards Academy

Week 5:

- LI: I can investigate the trigonometric ratios using similar triangles
- Ll:: I can define and use the cosine, sine and tangent ratios

Demonstration Videos:

https://www.youtube.com/watch?v=9vDotQsVgDc

Task 1

Hypotenuse - always across from the right-angle \& always longest.
Opposite - always opposite θ.
Adjacent - next to θ.

Trigonometry: Labelling Right-Angled Triangles	
For each triangle, label each side with a letter:	
H: Hypotenuse	(the longest side)
O: Opposite	(opposite the labelled angle)
A: Adjacent	(next to the labelled angle)

Task 2

§Stewards Academy

Task 3

Task 4

Stewards Academy

Week 6:

- LI: I can develop an understanding of the trigonometric ratios
- LI: I can solve problems using trigonometric ratios in right-angled triangles

Demonstration Videos:

https://corbettmaths.com/2013/03/30/trigonometry-missing-sides/
https://corbettmaths.com/2013/03/30/trigonometry-missing-angles/

SOH	CAH	TOA
$\sin \theta=\frac{O p p}{H y p}$	$\cos \theta=\frac{A d j}{H y p}$	$\operatorname{Tan} \theta=\frac{O p p}{A d j}$
$\sin \theta$		

Task 1

"Stewards Academy

Task 2

Task 3

S Stewards Academy

Task 4

Trig Tower

Start from the left of the tower.
Can you find the value of x ?

Task 5

SStewards Academy

Task 6

Task 7

"Stewards Academy

Task 7

	Mathe Assersment Lidder M9 Unit 6 Summer 2	
Attainment Band：		Unit 6－Statistics
	Knowledge and Understanding	Skills
$\begin{aligned} & \frac{3}{\frac{3}{2}} \\ & \frac{3}{3} \\ & \frac{0}{3} \end{aligned}$	Wnows the trigonometric ratios	Uses trigonometry to answer two－step problems 9b User trigonometry to solve worded problems． 10 Uses trigonometry to find missing sides in complex shapes 11
$\begin{aligned} & \frac{3}{2} \\ & 2 \end{aligned}$	Splite a shape into two similar shapes 3	Finds the perimeter of compound similar shapes 3b Enlarges a shape using a fractional scale factor 5 Uses trigonometry to find a missing angle and side気，9a
骂	Understands column vectors， including negatives 6 Finds the equations of lines without a gradient： 12 Can determine between the different types of transformation 12	Proves triangles are similar $3 a$ Enlarges a shape from a point 5 Translates a shape given a vector 6 Describes rotations 7b Describe different transformations 12
둘	Hnows angle facts for similar shapes it Identify co－ardinates on a grid 5，7a	Finds inisbing side lengths using a scale factor $1 a, c$ Ratates a shape around a point： $7 \mathrm{a}$
苃	Understands how to find linear scale factors 1 Understands properties of similar triangles 2	Identifies if triangles are similar 2 Enlarges a shape by an integer sale factor 4

