Maths Summer 1

Year 10 Higher

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 10 Overview
Page 4: Knowledge Organiser
Page 5-9: Week 1 - Expanding and Factorising
Page 10-13: Week 2 - Factorising Quadratics
Page 14 - 16: Week 3 - Solving Quadratics
Page 17-22: Week 4 - Index Laws and Changing the Subject
Page 23-28: Week 5 - Volume
Page 29-35: Week 6 - Volume and Surface Area
Page 36-37: Week 7 - Similar Lengths, Areas, and Volumes
Page 38: Assessment Ladder

S Stewards Academy

S Stewards Academy

Year 10 - Higher
Summer One
Introduction to Quadratics, Rearranging
Equations, Surface Area and Volume
Revision Guide pages:
Quadratics- 38, 39
Rearranging Equations - 35
Surface Area -84
Volume $-82,83$

\[

\]

Stewards Academy

Week 1:

- LI: I can expand single brackets

Demonstration Videos:

http://corbettmaths.com/2013/12/23/expanding-brackets-video-13/

Tasks:

$4 x-2$	$42 x+21$	$15 x-10$	$8 x-6$	$10 x-5$
$14 x-14$	$6 x-2$	$9 x-6$	$18 x-18$	$2 x+4$
$12 x+8$	$12 x-8$	$8 x-4$	$15 x-18$	$6 x+9$
$12 x+9$	$6 x-3$	$10 x+4$	$20 x+15$	$15 x+9$
$9 x+6$	$12 x-12$	$30 x+18$	$20 x+16$	$6 x+6$

$2(5 x+2)$	$6(2 x-2)$
$3(3 x-2)$	$2(2 x-1)$
$7(2 x-2)$	$2(3 x-1)$
$4(2 x-1)$	$6(3 x-3)$
$5(3 x-2)$	$7(6 x+3)$

$4(3 x+2)$	$3(2 x-1)$
$2(1 x+2)$	$6(5 x+3)$
$5(2 x-1)$	$5(4 x+3)$
$4(5 x+4)$	$4(3 x-2)$
$3(5 x+3)$	$3(2 x+2)$

Question 4: Expand the following brackets
(a) $a(a+2)$
(b) $y(y-5)$
(c) $w(a+w)$
(d) $c(9-c)$
(e) $p(2 p+5)$
(f) $2 w(3 w-1)$
(g) $9 y(2 y+3)$
(h) $4 c(2 a+5 c)$
(i) $2 \mathrm{u}(3-\mathrm{u})$
(j) $m\left(m^{2}+3\right)$
(k) $y\left(y^{2}-7\right)$
(l) $\mathrm{g}^{2}(\mathrm{~g}-8)$
(m) $2 \mathrm{w}\left(\mathrm{w}^{2}+6\right)$
(n) $4 a\left(2 a^{2}-3\right)$
(o) $5 \mathrm{c}\left(3 \mathrm{c}^{2}-\mathrm{a}\right)$
(p) $8 w\left(3 w^{2}+3 y\right)$
(q) $x^{2}\left(x^{2}+4\right)$
(r) $3 w^{2}\left(7+2 w^{2}\right)$

"Stewards Academy

Question 5: Expand and simplify
(a) $5(y+3)+2(y+7)$
(b) $6(2 w+5)+9(w+2)$
(c) $3(y-2)+4(2 y+5)$
(d) $7(2 g+3)-5(g+2)$
(e) $6(x-2)-4(x-8)$
(f) $2(3 y-8)-5(2 y-1)$
(g) $8(5+2 m)+3(5-3 m)$
(h) $4(w+7)-2(2 w+1)$
(i) $9(1+2 y)+3(3-y)$

Question 6: Expand and simplify
(a) $w(w+5)+w(w+7)$
(b) $2 \mathrm{~g}(4 \mathrm{~g}+3)+\mathrm{g}(\mathrm{g}-7)$
(c) $n(n-4)-n(5-n)$
(d) $2 \mathrm{e}(4 \mathrm{e}+3)-3 \mathrm{e}(\mathrm{e}-5)$
(e) $a(3+c)+c(a+2)$
(f) $m(a+7)-a(4-3 m)$
(g) $8 \mathrm{c}(8-3 \mathrm{a})+3(4-\mathrm{c})$
(h) $5 y(3 y+z)-2 y(4 y-3 z)$
(i) $4 c\left(3 c-c^{2}\right)-2 c^{2}(4-5 c)$

Apply

Question 1: Can you spot any mistakes in the questions below.

$$
\begin{aligned}
& \begin{array}{l}
\text { Expand } 3(2 y-1) \\
\begin{array}{ll}
6 y-1 & \text { Multiply out } x(x+3) \\
& 2 x+3 x=5 x
\end{array} \\
\text { Expand and simplify } \quad 6(w+3)-2(w-5) \\
6 w+18-2 w-10 \\
=4 w+8
\end{array}
\end{aligned}
$$

Challenge:

Expand and simplify the following:

$$
-x(x-3)-x(3-x)-x(x-3)-x(3-x)
$$

SStewards Academy

Week 1:

- LI: I can expand double brackets

Demonstration Videos:
http://corbettmaths.com/2013/12/23/expanding-two-brackets-video-14/

Tasks:

Stewards Academy

Question 1: Expand and simplify
(a) $(w+4)(w+2)$
(b) $(y+1)(y+2)$
(c) $(c+2)(c+5)$
(d) $(x+6)(x+7)$
(e) $(a+5)(a-3)$
(f) $(g+7)(g-4)$
(g) $(s-4)(s+5)$
(h) $(x+1)(x-3)$
(i) $(\mathrm{p}-3)(\mathrm{p}-2)$
(j) $(y-4)(y-4)$
(k) $(\mathrm{k}-5)(\mathrm{k}-6)$
(l) $(v+4)(v+3)$
$(\mathrm{m})(\mathrm{n}+8)(\mathrm{n}-10)$
(n) $(b-3)(b+7)$
(o) $(z-9)(z-3)$
(p) $(a-5)(a+7)$
(q) $(w+2)(w-8)$
(r) $(r+7)(r+7)$
(s) $(w-11)(w+1)$
(t$)(\mathrm{t}-8)(\mathrm{t}-7)$

Question 2: Expand and simplify
(a) $(8+x)(2+x)$
(b) $(9+y)(4-y)$
(c) $(1+y)(3+y)$
(d) $(10-t)(4-t)$
(e) $(4-w)(w+2)$
(f) $(6-x)(x-4)$
(g) $(2-r)(8-r)$
(h) $(x+2)(8-x)$

Question 3: Expand and simplify
(a) $(y+2)(y-2)$
(b) $(w+7)(w-7)$
(c) $(a+1)(a-1)$
(d) $(x-10)(x+10)$
(e) $(g-8)(g+8)$
(f) $(6-x)(6+x)$
(g) $(4-r)(4+r)$
(h) $(11+y)(11-y)$

Question 4: Expand and simplify
(a) $(2 c+1)(2 c+3)$
(b) $(5 x+1)(2 x+5)$
(c) $(3 w+2)(w+1)$
(d) $(3 p+2)(2 p-1)$
(e) $(5 g-4)(g+1)$
(f) $(2 a-3)(4 a+7)$
(g) $(4 r-5)(2 r-3)$
(h) $(2 y-3)(9 y-1)$
(i) $(5 \mathrm{k}-4)(2 \mathrm{k}-1)$
(j) $(2 n+3)(2 n+5)$
(k) $(3 b+4)(2 b+9)$
(1) $(2 z-9)(6 z-5)$
(m) $(4 w-3)(3 w-1)$
(n) $(4 r+3)(3 r+2)$
(o) $(5 w-1)(2 w-3)$
(p) $(3+2 c)(5+c)$
(q) $(9+2 x)(3-2 x)$
(r) $(9-4 y)(2+3 y)$
(s) $(3 w+2)(3 w-2)$
(t) $(2 y+3)(2 y-3)$
(u) $(5 w-1)(5 w+1)$
(v) $(9-5 a)(9+5 a)$
(w) $(1-2 x)(1+2 x)$
(x) $(3+2 y)(3-2 y)$

Stewards Academy

Week 1:

- LI: I can factorise a linear expression

Demonstration Videos:

http://corbettmaths.com/2013/02/06/factorisation/

Tasks:

$4(4 x-5)$	$3(5 x-7)$	$4(4 x-5)$	$4(x+5)$	$6(x+7)$
$8(3 x+5)$	$2(x+2)$	$6(2 x+5)$	$7(4 x-7)$	$6(2 x-5)$
$5(2 x-7)$	$4(2 x+5)$	$6(2 x+3)$	$4(x+5)$	$7(2 x+5)$
$3(3 x-10)$	$3(x+4)$	$5(x+4)$	$5(2 x+7)$	$2(2 x-9)$
$3(2 x+3)$	$2(x+3)$	$7(2 x+3)$	$5(3 x+4)$	$7(x+8)$

$8 x+20$	$14 x+21$	$15 x-21$	$12 x-30$
$16 x-20$	$2 x+4$	$4 x-18$	$12 x+30$
$9 x-30$	$28 x-49$	$5 x+20$	$14 x+35$
$24 x+40$	$6 x+9$	$12 x+18$	$10 x-35$
$16 x-20$	$10 x+35$	$15 x+20$	$4 x+20$

Missing expression

$9 y(1+5 y)$	$4 y\left(5-2 y^{2}\right)$	$4 y(7 y+11)$	$7 x^{2}(3+2 x)$	$2 x(x+3)$
$7 x^{2}(2 x+3)$	$4 y^{3}(7+3 y)$	$11 y(7+4 y)$	$7 y\left(3 y^{2}+11\right)$	$9 x\left(3+5 x^{2}\right)$
$8 x^{2}(5-3 x)$	$3 x\left(1+5 x^{2}\right)$	$10 x(3+x)$	$2 x(x+6)$	$7 x(2-5 x)$
$8 x^{3}(11-5 x)$	$2 x(x+2)$	$6 x^{2}(3-2 x)$	$4 x^{2}(5-7 x)$	$3 y^{2}(7-3 y)$
$10 y(2+y)$	$2 x(x+1)$	$5 x^{2}(7+3 x)$	$7 x(1+7 x)$	$2 x(x+5)$

$3 \mathrm{x}+15 \mathrm{x}^{3}$	$35 \mathrm{x}^{2}+15 \mathrm{x}^{3}$	$20 \mathrm{y}-8 \mathrm{y}^{3}$	$27 \mathrm{x}+45 \mathrm{x}^{3}$
$28 \mathrm{y}^{2}+44 \mathrm{y}$	$28 \mathrm{y}^{3}+12 \mathrm{y}^{4}$	$21 \mathrm{y}^{2}-9 \mathrm{y}^{3}$	$77 \mathrm{y}+44 \mathrm{y}^{2}$
$88 \mathrm{x}^{3}-40 \mathrm{x}^{4}$	$21 \mathrm{y}^{3}+77 \mathrm{y}$	$18 \mathrm{x}^{2}-12 \mathrm{x}^{3}$	$14 \mathrm{x}-35 \mathrm{x}^{2}$
$14 \mathrm{x}^{3}+21 \mathrm{x}^{2}$	$20 \mathrm{y}+10 \mathrm{y}^{2}$	$30 \mathrm{x}+10 \mathrm{x}^{2}$	$40 \mathrm{x}^{2}-24 \mathrm{x}^{3}$
$9 \mathrm{y}+45 \mathrm{y}^{2}$	$20 \mathrm{x}^{2}-28 \mathrm{x}^{3}$	$7 \mathrm{x}+49 \mathrm{x}^{2}$	$21 \mathrm{x}^{2}+14 \mathrm{x}^{3}$

\square

Factorise	
1)	$4 x^{2}+12 x$
2)	$6 x^{2}+24 x$
3)	$8 x^{2}-16 x$
4)	$8 x^{2}+12 x$
5)	$9 x^{2}+3 x$
6)	$21 x+7 x^{2}$
7)	$5 x^{2}+45 x$
8)	$25 x-5 x^{2}$

wiN

Factorise

1) $16 x^{2}+12 x$
2) $24 x^{2}+42 x$
3) $16 x^{2}-24 x$
4) $8 x^{2}+18 x$
5) $9 x^{2}+21 x$
6) $28 x+35 x^{2}$
7) $30 x^{2}+45 x$
8) $20 x-36 x^{2}$

$\sum \stackrel{N}{2} \sqrt{n}$

Factorise

1) $5 x^{2} y+10 x y$
2) $12 x y^{2}+18 x y$
3) $15 x y-10 x$
4) $60 x-25 x^{2} y$
5) $21 x^{2} y-49 x y$
6) $24 x y^{2}-42 x y$
7) $30 x^{2} y^{2}-15 x y$
8) $8 x y^{2}-32 x^{2} y$

Stewards Academy

Week 2:

- LI: I can factorise a quadratic expression of the form $x^{2}+b x+c$

Demonstration Videos:

http://corbettmaths.com/2013/02/06/factorising-quadratics-1/
https://corbettmaths.com/2019/03/26/splitting-the-middle-term/

Tasks:

Number Pairs

What two numbers have a sum of 6 and a product of 8 ?
EXAMPLE
Sum $=6$
Product $=8$$\quad 2 \& 4$

Sum $=7$	
$=12$	3

2) $\begin{gathered}\text { Sum }=11 \\ \text { Product }=30\end{gathered} \square$
$\& \square$
3) $\begin{gathered}\text { Sum }=4 \\ \text { Product }=4\end{gathered}$ \square $\& \square$
4) $\begin{gathered}\text { Sum }=8 \\ \text { Product }=7\end{gathered}$ \square \& \square
5) $\begin{gathered}\text { Sum }=10 \\ \text { Product }=24\end{gathered}$ \square
\& \square

6) $\operatorname{Sum}=3$
Product $=-10$ \square
\& \square
7) $\begin{gathered}\text { Sum }=3 \\ \text { Product }=-18\end{gathered}$ \square \& \square
8) $\begin{gathered}\text { Sum }=7 \\ \text { Product }=-8\end{gathered}$ \square $\& \square$
9) $\begin{array}{r}\text { Sum }=1 \\ \text { Product }=-20\end{array}$ \square
\& \square
10) $\begin{gathered}\text { Sum }=-1 \\ \text { Product }=-20\end{gathered} \square$
\square
11)

Sum $=-4$ Product $=-21$ \square
\& \square
12) Sum $=0$
Product $=-36$ \square $\& \square$

A negative sum,

13) Sum $=-9$
Product $=18$ \square $\& \square$
14) $\mathrm{Sum}=-10$
Product $=24$ \square \& \square
15) $\mathrm{Sum}=-13$
Product $=36$
\square \& \square
16)

Sum $=-13$
Product $=-42$ \square \& \square
17)
Sum $=-11$
Product $=28$
\square \& \square

[^0]\square \& \square

19) $\begin{gathered}\text { Sum }=-4 \\ \text { Product }=-45\end{gathered}$
\square \& \square

Stewards Academy

Question 1: Factorise each of the following
(a) $\mathrm{x}^{2}+7 \mathrm{x}+12$
(b) $x^{2}+6 x+8$
(c) $x^{2}+5 x+6$
(d) $x^{2}+8 x+7$
(e) $\mathrm{x}^{2}+4 \mathrm{x}+4$
(f) $\mathrm{x}^{2}+8 \mathrm{x}+15$
(g) $x^{2}+6 x+9$
(h) $x^{2}+11 x+28$
(i) $\mathrm{x}^{2}+10 \mathrm{x}+25$
(j) $x^{2}+12 x+20$
(k) $x^{2}+25 x+24$
(l) $x^{2}+11 x+24$
(m) $\mathrm{x}^{2}+9 \mathrm{x}+14$
(n) $x^{2}+23 x+60$
(o) $x^{2}+29 x+100$
(p) $x^{2}+20 x+51$

Question 2: Factorise each of the following
(a) $\mathrm{x}^{2}+\mathrm{x}-12$
(b) $x^{2}+5 x-6$
(c) $x^{2}+3 x-10$
(d) $x^{2}+3 x-4$
(e) $x^{2}+2 x-48$
(f) $x^{2}+4 x-32$
(g) $x^{2}+2 x-35$
(h) $x^{2}+8 x-33$

Question 3: Factorise each of the following
(a) $x^{2}-3 x-10$
(b) $\mathrm{x}^{2}-\mathrm{x}-20$
(c) $x^{2}-6 x-27$
(d) $x^{2}-2 x-3$
(e) $x^{2}-x-12$
(f) $x^{2}-4 x-12$
(g) $x^{2}-4 x-21$
(h) $x^{2}-6 x-55$

Question 4: Factorise each of the following
(a) $x^{2}-6 x+9$
(b) $x^{2}-9 x+20$
(c) $\mathrm{x}^{2}-9 \mathrm{x}+14$
(d) $x^{2}-13 x+22$
(e) $x^{2}-9 x+8$
(f) $\mathrm{x}^{2}-12 \mathrm{x}+32$
(g) $x^{2}-15 x+36$
(h) $\mathrm{x}^{2}-14 \mathrm{x}+48$

Question 5: Factorise each of the following
(a) $\mathrm{x}^{2}-9 \mathrm{x}+8$
(b) $x^{2}+24 x+23$
(c) $x^{2}-5 x-14$
(d) $x^{2}-7 x+12$
(e) $\mathrm{x}^{2}+12 \mathrm{x}+36$
(f) $x^{2}-2 x-63$
(g) $x^{2}+14 x+24$
(h) $x^{2}+17 x+60$
(i) $\mathrm{x}^{2}-11 \mathrm{x}+30$
(j) $x^{2}-4 x-32$
(k) $x^{2}-2 x-63$
(l) $x^{2}-16 x-17$
(m) $x^{2}-11 x+18$
(n) $x^{2}-13 x+22$
(o) $x^{2}+18 x+56$
(p) $x^{2}-21 x+110$

Stewards Academy

Week 2:

- LI: I can factorise a quadratic expression of the form $a x^{2}+b x+c$

Demonstration Videos:

http://corbettmaths.com/2013/02/07/factorising-quadratics-2/
https://corbettmaths.com/2019/03/26/splitting-the-middle-term/

Tasks:

Question 1: Factorise each of the following
(a) $2 x^{2}+7 x+5$
(b) $2 \mathrm{x}^{2}+11 \mathrm{x}+15$
(c) $2 \mathrm{x}^{2}+9 \mathrm{x}+10$
(d) $3 x^{2}+13 x+4$
(e) $3 x^{2}+4 x+1$
(f) $3 x^{2}+8 x+4$
(g) $5 x^{2}+13 x+6$
(h) $5 x^{2}+26 x+5$
(i) $7 \mathrm{x}^{2}+10 \mathrm{x}+3$
(j) $11 x^{2}+47 x+12$
(k) $2 x^{2}+17 x+36$
(l) $5 x^{2}+62 x+24$

Question 2: Factorise each of the following
(a) $3 x^{2}+x-4$
(b) $7 x^{2}+20 x-3$
(c) $2 \mathrm{x}^{2}-13 \mathrm{x}+15$
(d) $3 x^{2}-17 x+10$
(e) $3 x^{2}-16 x-12$
(f) $3 x^{2}-x-4$
(g) $5 x^{2}-13 x-6$
(h) $3 x^{2}+8 x-3$
(i) $2 \mathrm{x}^{2}-\mathrm{x}-10$
(j) $2 x^{2}-3 x-44$
(k) $7 \mathrm{x}^{2}-22 \mathrm{x}+16$
(l) $2 x^{2}+15 x-38$

Question 3: Factorise each of the following
(a) $6 x^{2}+13 x+6$
(b) $9 x^{2}+9 x+2$
(c) $6 x^{2}+13 x+2$
(d) $8 x^{2}+41 x+5$
(e) $9 x^{2}+6 x+1$
(f) $8 x^{2}+26 x+15$
(g) $8 x^{2}+29 x+15$
(h) $10 x^{2}+9 x+2$
(i) $9 x^{2}+27 x+20$
(j) $10 \mathrm{x}^{2}+17 \mathrm{x}+7$
(k) $12 x^{2}+13 x+3$
(l) $15 x^{2}+32 x+16$

Question 4: Factorise each of the following
(a) $9 x^{2}-12 x-5$
(b) $4 x^{2}-4 x-3$
(c) $4 x^{2}-11 x+6$
(d) $6 x^{2}-7 x+2$
(e) $10 \mathrm{x}^{2}-91 \mathrm{x}+9$
(f) $4 x^{2}+25 x-56$
(g) $6 x^{2}-35 x+49$
(h) $6 x^{2}-7 x-10$
(i) $8 x^{2}+10 x-3$
(j) $15 x^{2}+31 x+10$
(k) $12 x^{2}+5 x-3$
(l) $20 x^{2}-23 x+6$

Stewards Academy

Week 2:

- LI: I can identify and use the difference of two squares

Demonstration Videos:

http://corbettmaths.com/2013/02/08/difference-between-two-squares/
Tasks:
Question 1: Factorise each of the following
(a) $x^{2}-25$
(b) $y^{2}-49$
(c) $\mathrm{w}^{2}-100$
(d) $x^{2}-4$
(e) $c^{2}-64$
(f) $\mathrm{x}^{2}-1$
(g) $x^{2}-900$
(h) $y^{2}-9$
(i) $16-\mathrm{x}^{2}$
(j) $1-\mathrm{y}^{2}$
(k) $81-x^{2}$
(l) $144-\mathrm{h}^{2}$
(m) $\mathrm{x}^{2}-\mathrm{y}^{2}$
(n) $a^{2}-c^{2}$
(o) $9 x^{2}-25$
(p) $4 y^{2}-1$
(q) $49 x^{2}-16$
(r) $100-81 \mathrm{x}^{2}$
(s) $9 x^{2}-4 y^{2}$
(t) $36 a^{2}-c^{2}$
(u) $121 w^{2}-196 y^{2}$
(v) $225-121 y^{2}$

Question 2: Factorise fully each of the following
(a) $2 \mathrm{x}^{2}-32$
(b) $2 y^{2}-18$
(c) $2 \mathrm{x}^{2}-200$
(d) $3 x^{2}-75$
(e) $5 \mathrm{c}^{2}-20$
(f) $18 x^{2}-2$
(g) $12 \mathrm{x}^{2}-147$
(h) $20 y^{2}-320$

Question 3: Factorise each of the following
(a) $\mathrm{x}^{4}-1$
(b) $\mathrm{y}^{4}-16$
(c) $\mathrm{a}^{4}-25$
(d) $x^{4}-y^{4}$
(e) $h^{2}-p^{4}$
(f) $16 \mathrm{x}^{4}-49$
(g) $y^{6}-36$
(h) $x^{6}-64$
(i) $81 \mathrm{p}^{4}-\mathrm{x}^{6}$
(j) $144 \mathrm{x}^{8}-1$

Can you spot any mistakes?

Factorise $x^{2}-16$

$$
(x+8)(x-8)
$$

$$
(x-5)(x-5)
$$

Factorise fully $2 y^{2}-50$
Factorise $y^{2}-9 w^{2}$

$$
2\left(y^{2}-25\right)
$$

$$
(3 w-y)(3 w+y)
$$

Stewards Academy

Week 3:

- LI: I can solve a quadratic equation of the form $x^{2}+b x+c=0$

Demonstration Videos:

http://corbettmaths.com/2013/05/03/solving-quadratics-by-factorising/

Tasks:

Question 1: Solve each of the equations below
(a) $(x-1)(x-3)=0$
(b) $(y-4)(y-9)=0$
(c) $(\mathrm{m}+1)(\mathrm{m}+6)=0$
(d) $(x-3)(x+2)=0$
(e) $(\mathrm{t}+7)(\mathrm{t}-3)=0$
(f) $(\mathrm{k}-10)(\mathrm{k}+9)=0$
(g) $(w+5)(w+11)=0$
(h) $(y-8)(y-2)=0$
(i) $(x+3)(x-9)=0$

Question 2: Solve each of the equations below
(a) $\mathrm{x}^{2}+6 \mathrm{x}+8=0$
(b) $x^{2}+7 x+12=0$
(c) $y^{2}+7 y+10=0$
(d) $y^{2}+3 y-4=0$
(e) $\mathrm{x}^{2}-2 \mathrm{x}-8=0$
(f) $\mathrm{m}^{2}-7 \mathrm{~m}+12=0$
(g) $y^{2}-10 y+25=0$
(h) $y^{2}-4 y-45=0$
(i) $\mathrm{x}^{2}-\mathrm{x}-56=0$
(j) $y^{2}+10 y+24=0$
(k) $\mathrm{x}^{2}+9 \mathrm{x}+18=0$
(l) $x^{2}+23 x+22=0$
(m) $y^{2}-13 y+22=0$
(n) $\mathrm{x}^{2}+\mathrm{x}-12=0$
(o) $\mathrm{m}^{2}-6 \mathrm{~m}-27=0$
(p) $\mathrm{x}^{2}-11 \mathrm{x}+18=0$
(q) $y^{2}-14 y+48=0$
(r) $x^{2}-15 x+56=0$
(s) $\mathrm{m}^{2}-\mathrm{m}-56=0$
(t) $y^{2}+22 y+96=0$
(u) $\mathrm{k}^{2}-18 \mathrm{k}-88=0$
(v) $x^{2}-38 x+72=0$
(w) $x^{2}+14 x-51=0$
(x) $y^{2}+32 y+240=0$
(y) $g^{2}-12 g-64=0$
(z) $y^{2}+22 y+121=0$

Question 3: Solve each of the equations below
(a) $(y-5)(y+5)=0$
(b) $(x+2)(x-2)=0$
(c) $(\mathrm{m}-9)(\mathrm{m}+9)=0$

Question 4: Solve each of the equations below
(a) $\mathrm{x}^{2}-9=0$
(b) $y^{2}-100=0$
(c) $\mathrm{w}^{2}-1=0$
(d) $\mathrm{k}^{2}-144=0$
(e) $x^{2}-64=0$
(f) $\mathrm{c}^{2}-0.25=0$

Stewards Academy

Week 3:

- LI: I can solve a quadratic equation of the form $a x^{2}+b x+c=0$

Demonstration Videos:

http://corbettmaths.com/2013/05/03/solving-quadratics-by-factorising/

Tasks:

Question 1: Solve each of the equations below
(a) $(2 y-1)(y-2)=0$
(b) $(4 x-3)(x+1)=0$
(c) $(2 y+3)(2 y-5)=0$
(d) $(5 m-4)(m+2)=0$
(e) $(\mathrm{h}+9)(3 \mathrm{~h}-1)=0$
(f) $(2 x-3)(3 x+7)=0$
(g) $(7 y+4)(2 y+1)=0$
(h) $(8 w-5)(w-11)=0$
(i) $(5 x+6)(3 x-4)=0$

Question 2: Solve each of the equations below
(a) $2 x^{2}+5 x+2=0$
(b) $2 \mathrm{x}^{2}+7 \mathrm{x}+5=0$
(c) $5 x^{2}+7 x+2=0$
(d) $2 x^{2}+17 x+36=0$
(e) $5 \mathrm{x}^{2}+23 \mathrm{x}+12=0$
(f) $3 x^{2}+7 x+2=0$
(g) $3 x^{2}+4 x+1=0$
(h) $2 x^{2}+7 x-4=0$
(i) $2 \mathrm{x}^{2}-\mathrm{x}-6=0$
(j) $7 x^{2}+23 x+6=0$
(k) $3 \mathrm{x}^{2}-\mathrm{x}-2=0$
(l) $5 x^{2}-16 x+3=0$
(m) $3 x^{2}+x-4=0$
(n) $2 x^{2}-13 x+15=0$
(o) $7 \mathrm{x}^{2}-22 \mathrm{x}+16=0$
(p) $2 x^{2}+15 x-38=0$
(q) $5 \mathrm{x}^{2}-31 \mathrm{x}+30=0$
(r) $3 x^{2}-10 x-48=0$

Question 3: Solve each of the equations below
(a) $4 x^{2}+8 x+3=0$
(b) $4 x^{2}+12 x-7=0$
(c) $4 x^{2}-11 x+6=0$
(d) $6 x^{2}+31 x+5=0$
(e) $4 \mathrm{x}^{2}-16 \mathrm{x}-9=0$
(f) $8 x^{2}-10 x-3=0$
(g) $10 x^{2}-11 x+1=0$
(h) $6 x^{2}+31 x+18=0$
(i) $9 x^{2}-6 x-8=0$
(j) $4 x^{2}-4 x-35=0$
(k) $12 \mathrm{x}^{2}+25 \mathrm{x}+12=0$
(l) $14 \mathrm{x}^{2}+23 \mathrm{x}-10=0$
(m) $6 x^{2}+13 x-5=0$
(n) $6 x^{2}-11 x-7=0$
(o) $16 x^{2}-30 x+9=0$

Question 4: Solve each of the equations below
(a) $4 \mathrm{x}^{2}-9=0$
(b) $4 x^{2}-121=0$
(c) $16 \mathrm{x}^{2}-25=0$
(d) $36 x^{2}-1=0$
(e) $9 x^{2}-196=0$
(f) $100 x^{2}-49=0$
(g) $4 \mathrm{x}^{2}-900=0$
(h) $64 \mathrm{x}^{2}-169=0$

Stewards Academy

Week 3:

- LI: I can solve quadratic equations that need rearranging

Demonstration Videos:

http://corbettmaths.com/2013/05/03/solving-quadratics-by-factorising/

Tasks:

Question 1: Solve each of the equations below
(a) $\mathrm{x}^{2}+2 \mathrm{x}=-1$
(b) $\mathrm{y}^{2}+8 \mathrm{y}+10=3$
(c) $\mathrm{x}^{2}=7 \mathrm{x}-12$
(d) $y^{2}+6 y+15=3-7 y$
(e) $\mathrm{x}^{2}-\mathrm{x}-8=2 \mathrm{x}+2$
(f) $2 x^{2}-14 x+49=x^{2}$
(g) $-2 x^{2}+x-1=-x^{2}-5 x+8$
(h) $11 \mathrm{x}^{2}-105=10 \mathrm{x}^{2}+\mathrm{x}+105$

Question 2: Solve each of the equations below
(a) $\frac{3}{x-4}=x-2$
(b) $\frac{x+3}{4}=\frac{3}{x-1}$
(c) $\frac{45}{x^{2}}-\frac{4}{x}-1=0$

Question 3: Solve each of the equations below
(a) $2 x^{2}+5 x=0$
(b) $2 \mathrm{x}^{2}-9 \mathrm{x}=0$
(c) $3 x^{2}+x=0$
(d) $4 x^{2}+15 x=0$
(e) $5 x^{2}-x=0$
(f) $6 x+3 x^{2}=0$
(g) $15 \mathrm{x}-2 \mathrm{x}^{2}=0$
(h) $16 x^{2}-20 x=0$

Question 4: Solve each of the equations below
(a) $5 \mathrm{x}^{2}-9 \mathrm{x}+6=2$
(b) $2 \mathrm{~m}^{2}+6 \mathrm{~m}+2=\mathrm{m}+5$
(c) $10 x^{2}+26 x-3=x^{2}$
(d) $3 x^{2}+9 x+8=x^{2}+2 x+3$
(e) $6 y^{2}+4=13-3 y+4 y^{2}$
(f) $3 \mathrm{x}^{2}+\mathrm{x}+2=3(\mathrm{x}+1)$
(g) $(4 x+3)(x+2)=3(x+1)$

Question 5: Solve each of the equations below
(a) $\frac{3}{2 x-1}=x-3$
(b) $\frac{2 x-1}{4}=\frac{1}{2 x-1}$
(c) $\frac{2}{x^{2}}+\frac{13}{x}+6=0$
(d) $\frac{3}{x^{2}}-\frac{5}{x}-12=0$

Stewards Academy

Week 4:

- LI: I can use the laws of indices with numbers and algebraic terms

Demonstration Videos:

http://corbettmaths.com/2012/08/20/powers-indices/
http://corbettmaths.com/2013/03/13/laws-of-indices-algebra/

Tasks:

Question 1: Write as a single power of 2.
(a) $2^{2} \times 2^{2}$
(b) $2^{2} \times 2^{3}$
(c) $2^{6} \times 2^{2}$
(d) $2^{4} \times 2^{3}$
(e) $2^{6} \times 2^{8}$
(f) $2^{2} \times 2$
(g) 2×2^{4}
(h) $2^{8} \times 2^{8}$
(i) $2^{9} \times 2^{2}$
(j) 2×2^{8}
(k) $2^{6} \times 2^{5}$
(l) $2^{2} \times 2^{2} \times 2^{2} \times 2^{2}$

Question 2: Write as a single power of 5 .
(a) $5^{5} \div 5^{2}$
(b) $5^{8} \div 5^{3}$
(c) $5^{9} \div 5^{2}$
(d) $5^{7} \div 5^{5}$
(e) $5^{3} \div 5$
(f) $5^{8} \div 5$
(g) $5^{7} \div 5^{4}$
(h) $5^{9} \div 5^{3}$
(i) $5^{4} \div 5^{8}$
(j) $5 \div 5^{3}$
(k) $5^{45} \div 5^{5}$
(l) $5^{3} \div 5^{3}$

Question 3: Write as a single power of 3.
(a) $\frac{3^{5}}{3^{2}}$
(b) $\frac{3^{10}}{3^{5}}$
(c) $\frac{3^{8}}{3^{3}}$
(d) $\frac{3^{20}}{3^{5}}$
(e) $\frac{3^{7}}{3^{7}}$
(f) $\frac{3^{2}}{3^{4}}$
(g) $\frac{3^{15}}{3^{9}}$
(h) $\frac{3^{3}}{3^{8}}$

Question 4: Write as a single power of 8.
(a) $\left(8^{5}\right)^{2}$
(b) $\left(8^{3}\right)^{2}$
(c) $\left(8^{4}\right)^{3}$
(d) $\left(8^{5}\right)^{4}$
(e) $\left(8^{3}\right)^{6}$
(f) $\left(8^{7}\right)^{3}$
(g) $\left(8^{6}\right)^{6}$
(h) $\left(8^{9}\right)^{2}$
(i) $\left(8^{4}\right)^{8}$
(j) $\left(8^{3}\right)^{-5}$
(k) $\left(8^{-5}\right)^{2}$

Question 5: Write as a single power of y .
(a) $y^{7} x y^{3}$
(b) $y^{9} \div y^{7}$
(c) $y^{6} \div y^{2}$
(d) $\left(y^{3}\right)^{5}$
(e) $y^{7} \div y$
(f) $y^{3} \div y^{7}$
(g) $\left(y^{9}\right)^{5}$
(h) $y^{6} x y^{7}$
(i) $y^{6} x^{5} y^{5} y^{2}$
(j) $y^{8} x y x y^{3}$
(k) $\frac{y^{8}}{y^{5}}$

Sts Stewards Academy

Question 1: Write as a single power of m.
(a) $\mathrm{m}^{2} \mathrm{xm}^{3}$
(b) $\mathrm{m}^{3} \mathrm{xm}^{3}$
(c) $\mathrm{m}^{6} \mathrm{xm}^{2}$
(d) $\mathrm{m}^{7} \mathrm{xm}^{3}$
(e) $\mathrm{m}^{6} \mathrm{xm}^{8}$
(f) $\mathrm{m}^{2} \mathrm{xm}$
(g) mxm^{3}
(h) $\mathrm{m}^{7} \mathrm{xm}^{8}$
(i) $\mathrm{m}^{9} \mathrm{xm}^{2}$
(j) mxm^{8}
(k) $\mathrm{m}^{6} \mathrm{xm}^{5}$
(l) $\mathrm{m}^{2} \mathrm{xm}^{2} \mathrm{xm}^{2} \mathrm{xm}^{2}$

Question 2: Write as a single power of n .
(a) $\mathrm{n}^{5} \div \mathrm{n}^{2}$
(b) $\mathrm{n}^{8} \div \mathrm{n}^{3}$
(c) $\mathrm{n}^{9} \div \mathrm{n}^{2}$
(d) $\mathrm{n}^{7} \div \mathrm{n}^{5}$
(e) $\mathrm{n}^{3} \div \mathrm{n}$
(f) $\mathrm{n}^{8} \div \mathrm{n}$
(g) $\mathrm{n}^{7} \div \mathrm{n}^{4}$
(h) $\mathrm{n}^{9} \div \mathrm{n}^{3}$
(i) $\mathrm{n}^{4} \div \mathrm{n}^{8}$
(j) $n \div n^{3}$
(k) $\mathrm{n}^{45} \div \mathrm{n}^{5}$
(l) $\mathrm{n}^{3} \div \mathrm{n}^{3}$

Question 3: Write as a single power of a.
(a) $\frac{a^{5}}{a^{2}}$
(b) $\frac{a^{9}}{a^{3}}$
(c) $\frac{a^{10}}{a^{2}}$
(d) $\frac{a^{7}}{a}$
(e) $\frac{a^{14}}{a^{7}}$
(f) $\frac{a^{4}}{a^{4}}$
(g) $\frac{a^{3}}{a^{4}}$
(h) $\frac{a^{5}}{a^{9}}$

Question 4: Write as a single power of y .
(a) $\left(y^{5}\right)^{2}$
(b) $\left(y^{3}\right)^{2}$
(c) $\left(y^{4}\right)^{3}$
(d) $\left(y^{5}\right)^{4}$
(e) $\left(y^{3}\right)^{6}$
(f) $\left(y^{7}\right)^{3}$
(g) $\left(y^{6}\right)^{6}$
(h) $\left(y^{9}\right)^{2}$
(i) $\left(y^{4}\right)^{8}$
(j) $\left(y^{3}\right)^{-5}$
(k) $\left(y^{-5}\right)^{2}$

Question 5: Write as a single power of y .
(a) $y^{7} x y^{3}$
(b) $y^{9} \div y^{7}$
(c) $y^{6} \div y^{2}$
(d) $\left(y^{3}\right)^{5}$
(e) $y^{7} \div y$
(f) $y^{3} \div y^{7}$
(g) $\left(y^{9}\right)^{5}$
(h) $y^{6} x y^{7}$
(i) $y^{6} x y^{5} x y^{2}$
(j) $y^{8} x y x y^{3}$
(k) $\frac{y^{8}}{y^{5}}$

Question 6: Write as a single power of x .
(a) $\left(2 x^{3}\right)^{2}$
(b) $\left(5 x^{6}\right)^{2}$
(c) $\left(5 x^{5}\right)^{3}$
(d) $\left(2 x^{3}\right)^{4}$
(e) $\left(7 x^{5}\right)^{2}$
(f) $\left(4 x^{7}\right)^{3}$
(g) $\left(2 x^{6}\right)^{6}$
(h) $\left(10 x^{9}\right)^{3}$
(i) $\left(3 x^{4}\right)^{4}$

Stewards Academy

Week 4:

- LI: I can use the laws of indices with fractional and negative powers

Demonstration Videos:

http://corbettmaths.com/2013/03/03/fractional-indices/
http://corbettmaths.com/2013/03/24/negative-indices/

Tasks:

Question 1: Evaluate each of the following
(a) 5^{-2}
(b) 2^{-1}
(c) 2^{-3}
(d) 4^{-2}
(e) 3^{-3}
(f) 6^{-1}
(g) 10^{-2}
(h) 2^{-4}
(i) 9^{-2}
(j) 3^{-4}
(k) 10^{-1}
(1) 7^{-2}
(m) 2^{-5}
(n) 5^{-3}
(o) 2^{-6}
(p) 10^{-4}
(q) 6^{-3}
(r) 10^{-6}

Question 2: Write each of the following in index form.
(a) $\frac{1}{5^{2}}$
(b) $\frac{1}{3^{4}}$
(c) $\frac{1}{8^{3}}$
(d) $\frac{1}{4^{5}}$
(e) $\frac{1}{10^{3}}$
(f) $\frac{1}{2^{6}}$

Question 3: Write each of the following in the form 2^{n}
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{1}{32}$
(d) $\frac{1}{8}$
(e) $\frac{1}{64}$
(f) $\frac{1}{256}$

Question 4: Evaluate each of the following
(a) $25^{\frac{1}{2}}$
(b) $81^{\frac{1}{2}}$
(c) $4^{\frac{1}{2}}$
(d) $144^{\frac{1}{2}}$
(e) $8^{\frac{1}{3}}$
(f) $125^{\frac{1}{3}}$
(g) $100^{\frac{1}{2}}$
(h) $1000^{\frac{1}{3}}$
(i) $49^{\frac{1}{2}}$
(j) $225^{\frac{1}{2}}$
(k) $64^{\frac{1}{2}}$
(l) $27^{\frac{1}{3}}$
(m) $216^{\frac{1}{3}}$
(n) $64^{\frac{1}{3}}$
(o) $16^{\frac{1}{4}}$
(p) $1^{\frac{1}{4}}$
(q) $81^{\frac{1}{4}}$
(r) $625^{\frac{1}{4}}$

Question 5: Write each of the following in index form
(a) \sqrt{x}
(b) \sqrt{y}
(c) $\sqrt[3]{a}$
(d) $\sqrt[4]{y}$
(e) $\sqrt[6]{x}$
(f) $\sqrt[8]{c}$

LINK
Left \& Right

A	$36^{-\frac{1}{2}}$	$\frac{1}{3}$	
\mathbf{B}	$25^{-\frac{1}{2}}$	$\frac{1}{6}$	
C	$8^{-\frac{1}{3}}$	$\frac{1}{27}$	
D	$27^{-\frac{1}{3}}$	$\frac{1}{8}$	
E	$27^{-\frac{2}{3}}$	$\frac{1}{4}$	
F	$8^{-\frac{2}{3}}$	0.2	
G	$9^{-\frac{3}{2}}$	$\frac{1}{32}$	
H	$8^{-\frac{4}{3}}$	0.5	
I	$16^{-\frac{3}{4}}$	$\frac{1}{16}$	
J	$16^{-\frac{5}{4}}$	$\frac{1}{9}$	

Challenge:

$$
4^{\frac{-3}{2}} \times 8^{\frac{1}{2}}=2^{x}
$$

Find the value of x.

\$Stewards Academy

Week 4:

- LI: I can change the subject of a formula by rearranging

Demonstration Videos:

http://corbettmaths.com/2013/12/23/changing-the-subject-video-7/
http://corbettmaths.com/2013/12/28/changing-the-subject-advanced-video-8/

Tasks:

Question 1: Make y the subject of each of the following
(a) $y+w=c$
(b) $\mathrm{y}-\mathrm{p}=\mathrm{m}$
(c) $\mathrm{m}+\mathrm{y}=\mathrm{s}$
(d) $\mathrm{y}-2 \mathrm{~g}=\mathrm{n}$
(e) $3 y=c$
(f) $\mathrm{ay}=\mathrm{w}$
(g) $\frac{\mathrm{y}}{\mathrm{c}}=\mathrm{w}$
(h) $\frac{y}{a}=2 c$
(i) $a=y+p$
(j) $\mathrm{c}=\mathrm{y}-\mathrm{k}$
(k) $y^{2}=s$
(l) $y^{3}=x$
(m) $\sqrt{ } \mathrm{y}=\mathrm{g}$
(n) $\pi y=c$
(o) $\mathrm{n}-\mathrm{y}=\mathrm{t}$
(p) $\mathrm{ry}=\mathrm{c}$
(q) $4 \pi y=b$
(r) $\mathrm{y}+7 \mathrm{t}=\mathrm{c}+\mathrm{r}$
(s) $\frac{\mathrm{r}}{\mathrm{y}}=\mathrm{w}$
(t) $\mathrm{y}^{2}=\mathrm{k}+\mathrm{x}$
(u) $\mathrm{A}=\mathrm{xy}$

Question 2: Make x the subject of the following formulae
(a) $4 \mathrm{x}+\mathrm{c}=\mathrm{w}$
(b) $\mathrm{dx}-\mathrm{t}=8$
(c) $\mathrm{x}^{2}+3=\mathrm{h}$
(d) $2 x+2 y=P$
(e) $s=x^{2}-3$
(f) $y=x z+s$
(g) $\frac{x}{n}+2=w$
(h) $\frac{x}{6}-5=w$
(i) $\frac{x+3}{c}=h$
(j) $3 y=4 x+1$
(k) $\mathrm{x}^{2}+\mathrm{a}=\mathrm{v}$
(1) $x^{3}-4=5 y$
(m) $\frac{\mathrm{x}+\mathrm{t}}{\mathrm{m}}=2 \mathrm{c}$
(n) $\frac{w+x}{u}=3 z$
(o) $\mathrm{A}=\pi \mathrm{x}^{2}$
(p) $\mathrm{A}=1 / 2 \mathrm{bx}$
(q) $V=a b x$
(r) $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{ax}$
(s) $\frac{a+b}{x}=r$
(t) $\frac{5 c x}{b}=a$
(u) $\sqrt[3]{\frac{x}{k}}=w$

Question 3: Make c the subject of the following
(a) $(\mathrm{a}+\mathrm{c})^{2}=\mathrm{t}$
(b) $\mathrm{v}=\mathrm{u}+\mathrm{ac}$
(c) $\mathrm{v}=\pi \mathrm{c}^{2} \mathrm{~h}$

\$Stewards Academy

	Decide if each card is TRUE or FALSE	
$a x+b x=y \quad \Longrightarrow \quad x=\frac{y}{a+b}$	B $\begin{gathered} a(x-3)=b(x-2) \\ \frac{3 a-2 b}{b-a}=x \end{gathered}$	$\frac{5}{x}+7=y \quad \measuredangle \quad \frac{5}{y-7}=x$
$\frac{a+1}{a}=y \quad \Longleftrightarrow \quad \frac{1}{y+1}=a$	$\frac{x-1}{x}=y \quad \Longleftrightarrow \quad \frac{-1}{y-1}=x$	$\frac{g+5}{2 g}=e \quad \measuredangle \quad \frac{5}{2 e+1}=g$
G $\frac{2 x}{x+3}=y \quad \Longleftrightarrow \quad \frac{2 y}{3-y}=x$	$\frac{x+a}{x-b}=y \quad \measuredangle \quad \frac{b y-a}{1-y}=y$	$\frac{4 x}{7-x}=y \quad \Longleftrightarrow \quad \frac{7 y}{4+y}=x$
$\frac{6 w}{8-3 w}=q \quad \leftrightharpoons \quad \frac{8 q}{6+3 q}=w$	$\frac{t-7}{t+1}=s \quad \measuredangle \quad \frac{s+7}{1-s}=t$	$\frac{2 a+8}{3 a}=b \quad \Longleftrightarrow \quad \frac{8}{3 b+2}=a$
M $\frac{3-4 h}{2 h}=i \quad \measuredangle \quad \frac{3}{2 i+4}=h$	N $\frac{3 q-6}{7-2 q}=r \quad \Longleftrightarrow \quad \frac{6 r+7}{3+2 r}=q$	$\frac{2 x}{a}+\frac{x+3}{b}=y \Longleftrightarrow \frac{a y-3 a}{2 b+a}=x$

S Stewards Academy

Week 5:

- LI: I can calculate the volume of cuboids and prisms

Demonstration Videos:

http://corbettmaths.com/2012/08/09/volume-of-cuboids-and-cubes/
http://corbettmaths.com/2013/04/20/volume-of-a-prism/

Tasks:

"Stewards Academy

Stewards Academy

Week 5:

- LI: I can calculate the volume of cylinders

Demonstration Videos:

http://corbettmaths.com/2013/02/15/volume-of-a-cylinder/

Tasks:

Question 1: Work out the volume of each cylinder.
Give each answer to one decimal place.
(a)

(b)

(d)

(e)

(c)

(f)

Question 2: Work out the volume of each cylinder.
Give each answer in terms of π.
(a)

(b)

(c)

Question 3: Work out the height of each cylinder. Give each answer to one decimal place.
(a)

Volume $=1600 \mathrm{~cm}^{3}$
© CORBETTMATHS 2016
(b)

Volume $=800 \mathrm{~cm}^{3}$
(c)

Question 4: Work out the value of x .
Give each answer to one decimal place.
(a) Volume $=725 \mathrm{~cm}^{3}$

(b)

Volume $=9000 \mathrm{~cm}^{3}$
(c)

Volume $=170 \mathrm{~cm}^{3}$

Apply

Question 1: A cylindrical oil drum has a diameter of 48 cm and a height of 92 cm .
Calculate the volume of the oil drum.

Question 2: A cylinder has a radius of 2 m and a height of 5 cm . Work out the volume of the cylinder in terms of π.

Question 3: Timothy is filling cups with orange juice.
Each cup is a cylinder with radius 3 cm and height 7 cm . Timothy has 2 litres of orange juice.
1 litre $=1000 \mathrm{~cm}^{3}$
How many cups can be filled?

Question 4: Shown below is a cylinder and a cube.
The volume of the cylinder is equal to the volume of the cube. Find y.

Stewards Academy

Week 5:

- LI: I can calculate the volume of spheres

Demonstration Videos:

http://corbettmaths.com/2013/03/03/volume-of-a-sphere/

Formulae:

Volume of a Sphere:

$$
\frac{4}{3} \pi r^{3}
$$

where r is the radius of the sphere.

Tasks:

Question 1: Find the volume of each of these spheres.
Give each answer to one decimal place (you may use a calculator)
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the volume of each of these spheres.
Give each answer in terms of π (you may not use a calculator)
(a)

(b)

(c)

H Stewards Academy

Question 3: Find the volume of each of these spheres.
Give your answers to three significant figures (you may use a calculator)
(a) A sphere with radius 9 cm
(b) A sphere with diameter 38 cm
(c) A sphere with diameter 6.7 cm
(d) A sphere with radius 1.25 inches.

Question 4: Find the size of the radius in each of the spheres below. Give your answers to one decimal place (you may use a calculator)
(a)

Volume $=200 \mathrm{~cm}^{3}$
(b)

Volume $=1950 \mathrm{~cm}^{3}$
(c)

Volume $=1 \mathrm{~m}^{3}$

Question 5: Find the size of the diameter in each of the spheres below.
Give your answers to one decimal place (you may use a calculator)
(a)

Volume $=50 \mathrm{~cm}^{3}$

Apply

(b)

Volume $=2360 \mathrm{~cm}^{3}$
(c)

Volume $=0.4 \mathrm{~m}^{3}$

Question 1: A metal cuboid measuring 4 cm by 5 cm by 12 cm is melted down and a sphere is made.
Calculate the radius of the sphere.
Question 2: Calculate the volume of a hemisphere with base of radius 8 cm .

Question 3: A solid sphere fits perfectly inside of a cube box of side length 10 cm .
What percentage of the box is empty?
Question 4: A ball of gold has a radius of 9 cm .
The density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$.
Work out the mass of the ball.

Stewards Academy

Week 6:

- LI: I can calculate the volume of cones and pyramids

Demonstration Videos:

http://corbettmaths.com/2013/03/03/volume-of-a-cone/
http://corbettmaths.com/2013/03/05/volume-of-a-pyramid/
https://corbettmaths.com/2019/04/24/volume-of-a-frustum/
Formulae:

Volume of a Cone:

$$
\frac{1}{3} \pi r^{2} h
$$

where r is the radius, and h is the perpendicular height of the cone.

Volume of a Pyramid:

$\frac{1}{3} \times$ area of base \times height

Question 1: Work out the volumes of each of following cones.
Give each answer to one decimal place.
(a)

(b)

5 cm
(c)

Question 2: Work out the volumes of each of the following cones.
Give each answer in terms of $\boldsymbol{\pi}$
(a)

20 cm
(b)

(c)

H Stewards Academy

Question 3: Work out the vertical height of each cone.
Give each answer to a suitable degree of accuracy.
(a)

(b)

Volume $=22 \mathrm{~cm}^{3}$
(c)

Volume $=17 \mathrm{~cm}^{3}$

Question 4: Calculate the length of the radius for each of these cones. Give each answer to a suitable degree of accuracy.
(a)

Volume $=195 \mathrm{~cm}^{3}$
(b)

Volume $=300 \mathrm{~cm}^{3}$
(c)

Volume $=880 \mathrm{~cm}^{3}$

Question 1: Find the volume of each of these pyramids.
Give each answer to one decimal place (you may use a calculator)
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: A square-based pyramid has a base with side length 8 cm .
The height of the pyramid is 11 cm .
Calculate the volume of the pyramid.

Stewards Academy

Question 3: A rectangular-based pyramid has a base with length 12 cm and width 6 cm . The height of the pyramid is 8 cm .
Calculate the volume of the pyramid.
Question 4: An octagon-based pyramid has a height of 18 cm .
The area of the octagon base is $20 \mathrm{~cm}^{2}$.
Calculate the volume of the pyramid

Question 5: A hexagon-based pyramid has a height of 54 cm .
The volume of the pyramid is $1080 \mathrm{~cm}^{3}$.
Calculate the area of the base of the pyramid.

Challenges:

This frustum has been created by slicing off the top of a cone as shown. The radius of the frustum's smaller circular face is 6 cm and the diameter of its larger circular face is 20 cm . The height of the frustum is 8 cm . Find the volume of the frustum, in cm^{3}, rounding your answer to 2 decimal places.

A cone is placed inside a sphere as shown. The sphere and the circular base of the cone have the same radius. The height of the cone is equal to the radius of the sphere.

What fraction of the sphere is occupied by the cone?

Stewards Academy

Week 6:

- LI: I can calculate the surface area of spheres

Demonstration Videos:

http://corbettmaths.com/2013/03/26/surface-area-of-a-sphere/

Formulae:

Surface Area of a Sphere:

$4 \pi r^{2}$
where r is the radius of the sphere

Question 1: Work out the surface area of each of these spheres.
Give each answer to 2 decimal places (you may use a calculator)
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the surface area of each of these spheres.
Give each answer in terms of $\boldsymbol{\pi}$ (you may not use a calculator)
(a)

(b)

(c)

H Stewards Academy

Question 3: Find the surface area of each of these spheres.
Give your answer to 3 significant figures (you may use a calculator)
(a) A sphere with diameter 2 cm
(b) A sphere with radius 36 mm
(c) A sphere with radius 0.4 m
(d) A sphere with diameter 2.07 inches

Question 4: Find the size of x in each of the sphere below.
Give your answers to two decimal places (you may use a calculator)
(a)

Surface area $=50 \mathrm{~cm}^{2}$
(b)

Surface area $=940 \mathrm{~cm}^{2}$
(c)

Surface area $=4800 \mathrm{~cm}^{2}$

Question 5: Find the size of x in each of the sphere below.
You may not use a calculator
(a)

(b)

(c)

Surface area $=100 \pi \mathrm{~cm}^{2}$

Apply

Question 1: A glass paperweight is shown below.
The paperweight is a hemisphere with diameter 9 cm .
Find the surface area of the paperweight

Question 2: The formula for the surface area of a sphere is $A=4 \pi r^{2}$
Make r the subject of the formula

Stewards Academy

Week 6:

- LI: I can calculate the surface area of cones

Demonstration Videos:

http://corbettmaths.com/2013/10/24/surface-area-of-cone/

Formulae:

Curved Area of a Cone:

$\pi r l$

where r is the radius, and l is the slant height of the cone.

Question 1: Work out the surface areas of each of the following cones.
Give each answer in terms of π
(a)

(b)

(c)

Question 2: Work out the surface areas of each of the following cones. Give each answer to one decimal place.
(a)

(b)

(c)

Question 3: Work out the surface areas of each of the following cones. Give each answer to one decimal place.
(a)

(b)

(c)

H, Stewards Academy

Question 4: Work out the surface area of each of the following cones. Give each answer in terms of $\boldsymbol{\pi}$
(a)

(b)

(c)

Question 5: Calculate the slant height for each of these cones
(a)
(b)
(c)

Total surface area $=100 \mathrm{~cm}^{2}$

Question 6: Calculate the lengths of the radius for each of these cones
(a)

Total surface area $=36 \pi \mathrm{~cm}^{2}$
(b)

Total surface area $=9600 \pi \mathrm{~cm}^{2}$

Question 7: Calculate the heights of these cones
(a)

Total surface area $=800 \pi \mathrm{~cm}^{2}$
(b)

Total surface area $=750 \mathrm{~cm}^{2}$

Stewards Academy

Week 7:

- LI: I can use the scale factor of similar shapes to find missing sides, areas, and volumes

Demonstration Videos:

http://corbettmaths.com/2012/08/10/congruent-and-similar-shapes/
http://corbettmaths.com/2013/11/16/similarshapes/
http://corbettmaths.com/2013/11/16/similar-shapes-areas/
http://corbettmaths.com/2013/11/17/similar-shape-volumes/

Tasks:

Here are two similar rectangles. The perimeter of A is 32 cm and its area is $60 \mathrm{~cm}^{2}$.

a) Find the perimeter of rectangle B.
b) Find the area of rectangle B.

Here are two similar rectangles. The perimeter of A is 15 cm and the perimeter of B is 45 cm .

A

a) Given that the area of rectangle A is $12 \mathrm{~cm}^{2}$, find the area of rectangle B.

Here are two similar triangles.
The area of C is $12 \mathrm{~cm}^{2}$ and the area of D is $48 \mathrm{~cm}^{2}$.

c) Work out the value of x.

Here are two similar shapes, with areas as shown.

$\leftarrow 15 \mathrm{~cm} \rightarrow$
b) Work out the value of x.

Stewards Academy

Cuboid B is an enlargement of cuboid A with scale factor 2.

a) Compare the volumes of the two cuboids.
b) Compare the surface areas of the two cuboids.

Here are two similar prisms. The volume of C is $10 \mathrm{~cm}^{3}$ and the volume of D is $270 \mathrm{~cm}^{3}$.

c) Work out the value of x.
d) Given that the surface area of D is $693 \mathrm{~cm}^{2}$, work out the surface area of C.

Cuboids A and B are similar.
Cuboid B is 3 times taller than A.

a) Work out the volume of cuboid B.

Prism D is an enlargement of prism C.

b) Work out the value of x.
R and S are mathematically similar square-based pyramids. The surface area of R is $625 \mathrm{~cm}^{2}$ and the surface area of S is $100 \mathrm{~cm}^{2}$.
a) The length of one side of the square base of R is 12.5 cm . What is the length of one side of the square base of S?
b) The volume of S is $56 \mathrm{~cm}^{3}$. Work

R

S out the volume of R.

Mathe Actelment Ladder
T10 Unit 5 Higher Summer 1

Questions	Question Title
1	Conmerting decimals to fractions
2	Writinge number ss a percentage of another
3	Sulastituting into formul3e
4	Units of density
5	Solving linear equationt brackets, en bath sides
Ga	Inwerse proportion graphs, prism volume
6 b	Volume of a prism
7	Destribing enlargements
8	Estimating the mean for grouped data
9	Right-angled trigonometry, finding angles
10	Finding the next term in a quadratic sequence
11	Simplifying algebiraic fractions
12	Compound measure
13	Solving equations and straight lines
14 a	Fractions of amounts
146	Comparing fractions
15	Compound interest, exponential growth
16 a	Factorising expressions
16b	Factorising quadratic expressions.
17	Area of a parallelogram, trigonometry
18a/b	Shading sets in Venn diagrams
19	Area af a rectangle, writing and salving equations
20	Agebraic direct proportion
214	Using a quadratic graph to solve a related quadratic equation
21b	Solving quadratic equations
22	Area of a semi-tircles and sectors, percentage of amounts
23a	Drawing a histogram
23b	Casculating frequencies from a histogram
24	Drawing and reading a speed-time graph
25	Pressure, upper and lower hounds calculations
26	Vector proofs
27	Solving quadratie equations from algebreie fractions

[^0]: Sum $=-1$ Product $=72$

