Science KS4: Blended Learning Booklet

P5 Forces

Name:

Form:

Aim to complete four lessons each week. Watch the videos and follow the four part lesson plan All video clips are online using the ClassCharts link. Upload all work onto ClassCharts for feedback.

The online textbook has all the key information and vocabulary to help you with this unit To log on to the online textbook:

- https://connect.collins.co.uk/school/portal.aspx
- Type in "stewards" and select Stewards Academy
- Login using your date of birth,
initial of your surname and your academic year

Contents	Contents
Title page	Lesson 11
Contents	Lesson 12
Big Picture - Overview	Lesson 13
Zoom in - My Learning Journey	Lesson 14 (T)
Lesson 1	Lesson $15(T)$
Lesson 2	Lesson 16 (T)
Lesson 3	Lesson 17 (T)
Lesson 4	Lesson 18
Lesson 5	Lesson 19
Lesson 6	Lesson 20
Lesson 7	Lesson - Revision
Lesson 8	Knowledge organiser
Lesson 9	SAL
Lesson 10	(T) = Triple scientists only

ZOOM IN...

MY LEARNING JOURNEY:

Subject: Forces Year: 10 Unit: P5

AIMS
In this unit students will learn by about
what forces are and what they do, both
contact and non-contact forces. How a
force can cause acceleration, how motion
can be described and calculated using
Newton's three laws of motion. The
turning effect of a force and what causes
pressure in solids, liquids and gases.
Students will also learn how we how we
can make driving safer by understanding
forces and how the motion of an object
changes as it falls.

U Work togther to make the roads a safter place for all

R Learning when to apply each of Newton's Laws
A How Science works to find solutions for the worlds problems
G Share our scientific knowledge
E Experiencing Science in action
C That road safety can be improved by applying the laws of physics
o To carry out scientific investigations

CAREERS

- Electromagnetic spectrum

- Colour and Ienses

- Crash Investigator
- Driving instructor Diver or Parachutist
- Measuring wave speed

Reflection an refraction

- Sound waves
- Seismic waves

UP NEXT

Waves

- Describing waves

.

Connection

Have a look at the topic overview and the P5 zoom in.

Populate what you know and your personal objectives.

Lesson 1: P5.1 - Forces

Activation

니: Recognise the difference between contact and non-contact forces.
State examples of scalar and vector quantities.

1. https://www.youtube.com/watch?v=WCPTKRaScgE\&feature=emb logo
2. https://www.youtube.com/watch?v=iLB 4Wu2QOg
3. Make a note of the title and the LI
4. Read pages 142-143
5. Define "scalar" and "vector"
6. Using the example of the video (at 3.23 min) Draw or list examples of contact and noncontact forces

Demonstration

Attempt questions 1-5

In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P5.1 - Forces

Connection

1 NA
2 NA
3 NA

Demonstration

1 e.g. friction between the tyres of a car and the road 2 e.g. the gravitational force pulling you down as you are falling from a tree
3a acceleration, force and momentum are vector quantities
3b These quantities have a magnitude and a direction; the other quantities only have a magnitude
4

5 Final distance $=400 \mathrm{~m}$; Final displacement $=0 \mathrm{~m}$.

Connection

Q1. Give one example each of a contact and non-contact force.
Q2 Why is acceleration described as a vector quantity?
Q3. A runner ran an 800 m race. His displacement was 0 . Draw a figure representing his race.

Lesson 2: P1.2 Speed

Activation

니: \quad Calculate speed using distance travelled divided by time taken Calculate speed from a distance-time graph

1. https://www.youtube.com/watch?v=QaU9jMHh7gE\&feature=emb logo
2. Make a note of the title and the LI
3. Read pages $144-145$
4. Define "gradient" \& "average speed" and for H students only "tangent"
5. Write down the speed equation in words and symbols.

Demonstration

Attempt questions 1-6.
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P5.2 - Speed

Demonstration

Connection

1 contact: e.g. air resistance, friction etc Non-contact: e.g. magnetism, gravity etc 2 acceleration has both magnitude and direction (e.g. a rocket accelerating upwards)
3 Circle drawn with one dot to represent starting and end points at the same spot.

1 For example, the traffic means you have to slow down if there is a car in front of you; you need to come to a stop when you reach a junction.
2 average speed $=$ distance $/$ time $=50 \mathrm{~m} /(2.5 \times 60) \mathrm{s}=0.33 \mathrm{~m} / \mathrm{s}$ 3 average speed $=$ distance $/$ time $=10000 \mathrm{~m} /(1.75 \times 60 \times 60) \mathrm{s}$ $=1.6 \mathrm{~m} / \mathrm{s}$
4 distance travelled $=$ speed \times time $=0.5 \mathrm{~mm} / \mathrm{s} \times(1 \times 60 \times 60) \mathrm{s}=$ $1800 \mathrm{~mm}=1.8 \mathrm{~m}$
5 The gradient would increase / the line would become steeper.
6 The car is slowing down (gradient decreases as the time increases)
7 The gradient of the graph is getting steeper between 0 to 10 s . This shows that the speed is getting faster. Measuring the gradient of the tangent shows that the gradient gets steeper by the same amount each second. For example, when the time is 1 s the gradient is $4 \mathrm{~m} / \mathrm{s}$ and when the time is 2 s the gradient is $8 \mathrm{~m} / \mathrm{s}$. Therefore, the speed is increasing by the same amount each second (constant acceleration).

Connection

Q1. Write down the definition and equation for speed using symbols s, t, v

Q2. State the difference between speed and velocity.

Q3. A cyclist travelled 8000 m north, then 224 m South. It took him 1440 s. Calculate his total displacement.

Consolidation

Complete and self assess the relevant past paper question for this topic From the P5 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 3: P5.3 - Acceleration

Activation

LI: describe and calculate acceleration

1. https://www.youtube.com/watch?v=Kzx8GBTI5VM\&feature=emb logo
2. Make a note of the title and the LI
3. Read pages 146--147
4. Define "acceleration" \& "deceleration"
5. Produce a set of notes in the style of the video of the information contained in the green and blue headed sections of the text spread.

Demonstration

Attempt questions 1-10.
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P5.3-Acceleration

Demonstration

1 Car A has the greater acceleration.
2 The ball has the force of gravity pulling it to the ground.
3 The air resistance has a greater effect on the feather's motion than it does on the ball.
4 The ball decelerates to a rest as it moves up to its highest point, then it accelerates downwards.
5 Acceleration $=$ change in velocity $/$ time taken $=(40 \mathrm{~m} / \mathrm{s}-20 \mathrm{~m} / \mathrm{s}) / 10 \mathrm{~s}=2$ $\mathrm{m} / \mathrm{s} 2$
6a The velocity increases by $2 \mathrm{~m} / \mathrm{s}$ each second.
6 b The velocity decreases by $2 \mathrm{~m} / \mathrm{s}$ each second.
7 Acceleration = change in velocity $/$ time taken $=(0 \mathrm{~m} / \mathrm{s}-24 \mathrm{~m} / \mathrm{s}) / 3 \mathrm{~s}=-8 \mathrm{~m} / \mathrm{s} 2$
8 Speed at the start $=72 \mathrm{~km} / \mathrm{h}=72 \times(1000 / 3600) \mathrm{m} / \mathrm{s}=20 \mathrm{~m} / \mathrm{s}$ Speed at the end $=108 \mathrm{~km} / \mathrm{h}=108 \times(1000 / 3600) \mathrm{m} / \mathrm{s}=30 \mathrm{~m} / \mathrm{s}$ Acceleration = change in velocity $/$ time $=(30 \mathrm{~m} / \mathrm{s}-20 \mathrm{~m} / \mathrm{s}) / 5 \mathrm{~s}=2 \mathrm{~m} / \mathrm{s} 2$
9 Every year the glacier moves $4 \mathrm{~mm} / \mathrm{s}$ faster than it was moving a year ago.
10 They are accelerating because the direction is changing so there is a change in velocity.

Connection

Q1. Write down the equation for acceleration.
Q2. A car accelerates from rest to $20 \mathrm{~m} / \mathrm{s}^{2}$ in 2.5 s . Calculate its velocity during this time. Q3. A tractor is travelling east accelerating at $0.5 \mathrm{~m} / \mathrm{s}$. After 8 s it reaches a speed of $5 \mathrm{~m} / \mathrm{s}$. Calculate the eastward velocity before it started to accelerate.

Consolidation

Complete and self assess the relevant past paper question for this topic - From the P5 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 4: P5.4 - Velocity-time graphs

Activation

LI: Draw velocity-time graphs and calculate acceleration from the graphs

. https://www.youtube.com/watch?v=sG6QoLxwlw4

2. Make a note of the title and the LI
3. Read pages 148 -149
4. Write down what a velocity-time graph shows and draw a neatly labelled diagram of fig 5.9. Use a ruler and pencil
5. Describe what fig $5.9 \mathrm{a}, \mathrm{b}$ and c shows in terms of velocity against time (acceleration).

Demonstration

Attempt questions 1-8.
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections
in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P5.4 - Changing ideas about atoms

Demonstration

Connection
$1 a=\frac{v-u}{t}$

2a $a=\frac{20-0}{2.5}=8 \mathrm{~m} / \mathrm{s}^{2}$
3. $\quad \boldsymbol{a}=\frac{\boldsymbol{v}-\boldsymbol{u}}{\boldsymbol{t}} \Rightarrow \mathrm{u}=v-(a \times t)$

$$
u=5-(0.5 \times 8)=1 \mathrm{~m} / \mathrm{s}
$$

2

Time (s)

Answers: P5.4 contd. - Velocity-time graphs
 Demonstration

3 Graph (a) - acceleration $=25 / 5=5 \mathrm{~m} / \mathrm{s} 2$ Graph (b) acceleration $=-25 / 5=-5 \mathrm{~m} / \mathrm{s} 2$ Graph (c) - acceleration $=0$ $\mathrm{m} / \mathrm{s}^{2}$

4 Acceleration $=$ change in velocity $/$ time $=-20 / 5=-4 \mathrm{~m} / \mathrm{s}^{2}$

5 Change of velocity $=$ acceleration \times time $=-2 \times 4=-8 \mathrm{~m} / \mathrm{s}$. Truck moves at $25 \mathrm{~m} / \mathrm{s}$ at the beginning; velocity changes by $-8 \mathrm{~m} / \mathrm{s}$ so the velocity after braking $=25-8=17 \mathrm{~m} / \mathrm{s}$.

6a The train accelerates constantly for the first minute, then it travels at a constant velocity of $15 \mathrm{~m} / \mathrm{s}$ for the next 3 and a half minutes and it then decelerates constantly for the final half a minute.

6b Distance train travels is the area under the graph. Area of the left hand triangle $=1 / 2 \times 60 \mathrm{~s} \times 15 \mathrm{~m} / \mathrm{s}=450 \mathrm{~m}$ Area of the rectangle $=15 \mathrm{~m} / \mathrm{s} \times(3.5 \times 60) \mathrm{s}=3150 \mathrm{~m}$ Area of the right hand triangle $=1 / 2 \times 30 \mathrm{~s} \times 15 \mathrm{~m} / \mathrm{s}=225 \mathrm{~m}$ So the total distance $=450+3150+225=3825 \mathrm{~m}$

8 Graph (b) in Figure 5.10 could represent the motion of the stone as it moved upwards. This is because it is has an upwards velocity at the beginning of the throw which constantly reduces up to the stone's maximum height. For the stone moving downwards, the straight line could be continued so that it carries on going downwards below the axis. This would show that the stone is gaining speed but in the opposite direction. The whole graph should have a constant gradient, as the acceleration of the stone is the same throughout the motion (acceleration due to gravity).

Connection

Q1. What does the gradient on a velocity-time graph show?

Q2. What does the horizontal line on a distance-time graph show?

Q3. What is the acceleration of a car that goes from $5 \mathrm{~m} / \mathrm{s}$ to $29 \mathrm{in} / \mathrm{s}$ in 8 seconds?

Lesson 5: P5.5 - Calculations of motion

Activation

LI: Use an equation for uniform motion

1. https://www.youtube.com/watch?v=Kzx8GBTI5VM
2. Make a note of the title and the LI
3. Read pages 150-151
4. What is the acceleration equal to in "uniform motion"
5. Copy down the symbols of motion and their meanings.

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Demonstration

Attempt questions 1-7
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9
PLEASE ADD MODEL ANSWERS IN BLUE

Answers: P5.5 - Calculations of motion Demonstration

Connection

1 acceleration
2 stationary object
$3 \frac{(29-5) m / s}{8 s}=3 \mathrm{~m} / \mathrm{s}^{2}$

1a The velocity at the beginning of the motion.
1 b The velocity at the end of the motion.
2 Acceleration is change of velocity / time so its unit needs to be the unit of velocity divided by the unit of time.

3 Rearrange $v^{2}=u^{2}+2$ as to give $2 a s=v^{2}-u^{2}$
Dividing by 2a gives $s=\left(v^{2}-u^{2}\right) / 2 a$
So length of runway $=\left(v^{2}-u^{2}\right) / 2 a=\left(60^{2}-0^{2}\right) /(2 \times 2.5)=720 m$
4 Acceleration is $3 \mathrm{~m} / \mathrm{s} 2$ which means the velocity increases by $3 \mathrm{~m} / \mathrm{s}$ each second. Therefore, after 4 s the velocity has increased from rest to $3 \times 4=12 \mathrm{~m} / \mathrm{s}$. From question $3, \mathrm{~s}=\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right) / 2 \mathrm{a}$

So the distance the car travels $=\left(12^{2}-0^{2}\right) /(2 \times 3)=24 \mathrm{~m}$
$5 \mathrm{~s}=\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right) / 2 a$
($\mathrm{a}=-2 \mathrm{~m} / \mathrm{s}^{2}$ since this is a deceleration) Distance train travels $=\left(0^{2}-40^{2}\right) /(2 \times-2)=400 \mathrm{~m}$
$6 \quad v^{2}=u^{2}+2 \mathrm{as} ; \quad 0^{2}=112+(2 \times-9.8 \times \mathrm{s}) ; \quad 0=121-19.6 \mathrm{~s}$
$19.6 \mathrm{~s}=121$, so $\mathrm{s}=6.2 \mathrm{~m}$ (to 2 significant figures)
$7 \quad v^{2}=u^{2}+2 a s v^{2}=0^{2}+(2 \times 9.8 \times 2.5)$ so $v^{2}=49$ giving $v=7 \mathrm{~m} / \mathrm{s}$

Lesson 6: P5.6 - Heavy or massive?

Connection

Q1. what do the following symbols represent when describing motion? S, u, v

Q2. What is the equation for acceleration?

Q3. A ball is thrown vertically upwards at $24 \mathrm{~m} / \mathrm{s}$. Ignoring air resistance, what is its deceleration and what causes it?

Consolidation

Complete and self assess the relevant past paper question for this topic From the P5 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Activation

니: Explain the difference between mass and weight

1. https://www.youtube.com/watch?v=PEQzAbizMYs
2. Make a note of the title and the LI
3. Read pages 152-153
4. Define "mass" and "weight" and "gravitational field strength"
5. What units are mass and weight measured now? Are they the same? Can you explain your answer?
6. Write down the equation for weight from the bottom of page 152.

Demonstration

Attempt questions 1-7
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P5.6 - Heavy or massive

Demonstration

1 Yes they have lost weight as the gravitational force on them is smaller.
2 Yes, Denzil is correct. Weight is a force so a weighing scale is measuring a force.
3a $7 \times 9.8=68.6 \mathrm{~N}$
$3 \mathrm{~b} 0.5 \times 9.8=4.9 \mathrm{~N}$
$3 \mathrm{c} 400 \mathrm{~g}=0.4 \mathrm{~kg}$, so weight $=0.4 \times 9.8=3.92 \mathrm{~N}$

4a m = W / g = $30 / 9.8=3.1 \mathrm{~kg}$
$4 b$ The mass of the block remains at $3.1 \mathrm{~kg} . \mathrm{g}=\mathrm{W} / \mathrm{m}=11.1 / 3.1=3.6 \mathrm{~N} / \mathrm{kg}$.

5 Yes Alex is right. Weighing scales measure the weight and convert this to a mass. However the conversion assumes that you are on the Earth.

6 Her weight is ON as there is no gravitational force.

7 E.g. a balance where a beam is placed on a pivot. A known mass is placed on one side and the mass you need to measure is placed on the other. The masses are moved so that the beam balances and the reading is made. This would give identical readings on the Earth and on the Moon.

Connection

Q1. What is incorrect about this statement: My weight is 60 kg

Q2. Write the equation that links weight to mass.

Q3. If a steel block weighs 100 N on Earth what is its mass?

Lesson 7 P5.7 - Forces and motion

Activation

LI: Explain what happens to an object if all the forces acting on it cancel each out

1. https://www.youtube.com/watch?v=98DXe3uKwfc
2. Make a note of the title and the LI
3. Read pages 154-155
4. Write the definition of "balanced forces", "equilibrium" and "resultant force"
5. Write down Newton's first Law and copy the sentence and two bullet points on page 155
6. Draw and label either fig 5.16 OR 5.17 to show Balanced forces in action
7. Draw fig 5.18 and label it clearly to describe when forces cancel each other out.

Consolidation

Complete and self assess the relevant past paper question for this topic From the P5 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Demonstration

Attempt questions 1-10
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P5.7-Forces and motion

Demonstration

11 N
2a The drag force will increase.
$2 b$ No, the force up is larger than the force down.
3 No, the object could also be moving at a constant speed (in a straight line).
4a Their size must be the same.
4b They must be in opposite directions.
5 The forces must be the same size.
6 The weight acting downwards must have an equalsize to the reaction force acting upwards so that they balance out
7 The reaction force from the ground balances the weight of the boulder.
8 The driving force forward on the bicycle is balancing out the drag from the air.
9 The driving force will decrease but the drag force remains the same (for the same speed). This means that there is an unbalanced force opposing the motion and the bicycle slows down.
10 The Earth would move in a straight line in the direction it was moving in just before the Sun vanished. It would still be spinning on its axis though. (It would also continue to orbit round the Milky Way galaxy.)

Connection

Q1. A car is moving forwards on a road. State the direction of the following forces acting on the car.

Air resistance and friction

Normal contact force
Weight
Driving force from the engine
Q2. In which two of these situations does
Newton's First Law apply?
Choice 1) Object is stationary
Choice 2) Object is accelerating
Choice 3) Object is decelerating
Choice 4) Object moves with constant velocity

Consolidation

Complete and self assess the relevant past paper question for this topic From the P5 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Activation

ㄴI: Draw free-body diagrams. Calculate the resultant from opposing forces

1. https://www.youtube.com/watch?v=YGGxf6cp3Lo
2. Make a note of the title and the LI
3. Read pages 156-157
4. Write out what the following terms mean: "free-body diagram" and "resolving a force"
5. Draw and label Fig 5.22 as an example of a free-body diagram for a jet airplane.

Demonstration

Attempt questions 1-8
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen
Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

