Science KS4 Blended

 Learning: P3 - Particle
Model of Matter

Name:

Form:

Aim to complete four lessons each week. Watch the videos and follow the four part lesson plan
All video clips are online using the ClassCharts link. Upload all work onto ClassCharts for feedback.
The online textbook has all the key information and vocabulary to help you with this unit
To log on to the online textbook:
https://connect.collins.co.uk/school/defaultlogin.aspx

- Type in "stewards" and select Stewards Academy
- Login using your date of birth,
initial of your surname and your
academic year

\therefore

Student
Energy

School name: Stewards Academy - CM18 7 NOOCM18 7 NO) : Not your school?

Year group Year $11 \quad \square$

Stewards Academy

Diagram

Arrangement of particles

Movement
of particles

Close together and a regular pattern
Vibrate on the spot

Liquids

Close together and a random arrangement

Move around each other

Medium

```
Contents
Title page
Contents
Big Picture - Overview
Zoom in - My Learning Journey
Lesson 1
Lesson 2
Lesson 3
Lesson 4
Lesson 5
Lesson 6
Lesson 7
```


ZOOM IN...
 MY LEARNING JOURNEY:

Subject: Particle model: Year: 9 Unit: P3
AIMS
Students will learn about the role of particles
when thinking about density, changes of
state, pressure and volume. They will learn
how to link their understanding of particle
behaviour to the energy in solids, liquids and
gases. Students will measure specific heat
capacity and consider the effects of specific
latent heat, energy required for matter to
change from one another. Students will learn
some of the theory behind the gas laws. They
will investigate how pressure is affected by
volume and temperature.
behave in predictable ways

- To consider how substances behave on a particulate level

U Work together to carry out the required practical
R Calculating specific heat capacity for experimental data

A How specific heat capacity s important in heating our homes
G Share our scientif undersatnding of this topic
E Using models to explain how things work

CAREERS
Meteroricist

- Geologist
- Materials technician
- Fission and fusion

\square

PREVIOUS LEARNING
Pupils be familiar with changes of state and the need for thermal energy to be added or removed. They will have met gas pressure before in terms of Atmospheric Pressure and will know that the Pascal $(1 \mathrm{~N} / \mathrm{m} 2)$ is the unit for measuring pressure. They will have an understanding of the particle model the energy in particles in different states and how this links to the movement of their particles. .
 REMEMBER - -
--
\qquad

PERSONAL OBJECTIVES
-

- ..
..
. ...
- ..
- ..
..
- ..
- ..
-

Connection

Have a look at the topic overview and the P3 zoom in.

Populate what you know and your personal objectives.

Lesson 1: P3.1-Density.

Activation

LI: Calculate density and explain the different states of matter and differences in density.
https://www.youtube.com/watch?v=-EZmXVOSa20

1. Make a note of the title and the LI
2. Read pages 84 -and 85
3. List key words and define those you don't know
4. Draw and label figure 3.1

Demonstration

Attempt questions 1-8.
In 10 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.1 - Density

Lesson 3.1 Density
 1a solid

1b gas
1c liquid
2 The particles in a solid are usually closer together than they are in a liquid or a gas. Therefore, the same mass of material will occupy a smaller volume which makes the density higher.
3 The particles in a gas are far apart. Therefore, the volume of a certain mass of gas is much bigger than the same mass of liquid and solid. This makes the density small.

$4 \mathbf{a} \rho=m \div V=5400 \div 2=2700 \mathrm{~kg} / \mathrm{m} 3$
4b $m=\rho V=7700 \times 2=15400 \mathrm{~kg}$.
4c Aluminium is less dense than steel. Therefore, aeroplanes made from aluminium are likely to be much lighter.
5 Volume $=5 \times 4 \times 3=60 \mathrm{~m} 3 . m=\rho V=1.3 \times 60=78 \mathrm{~kg}$.
6 Cork is less dense than water so it floats. Iron is denser than water, so it sinks.
7 The mass of the air stays the same but the volume of the air gets less. Since density = mass volume, this means the density of the air will increase.
$81 \mathrm{~g} / \mathrm{cm} 3$ means that each cm 3 of the substance will have a mass of 1 g . There are $100 \times 100 \times$
$100=1000000 \mathrm{~cm} 3$ in 1 m 3 , so 1 m 3
of the substance will have a mass of $1000000 \mathrm{~g} .1000000 \mathrm{~g}=$ 1000 kg , so 1 m 3 of the substance has a mass of 1000 kg giving a density of $1000 \mathrm{~kg} / \mathrm{m} 3$.

Connection

Q1. A regular cuboid of copper is 3.35 $\mathrm{cm} \times 2 \mathrm{~cm} \times 1 \mathrm{~cm}$ and weighs 60 g . What is its density to two decimal places (d.p.)?
02. Zinc has a density of $7.14 \mathrm{~g} / \mathrm{cm}^{3}$. What volume (to two d.p.) would weigh 40 g ?
03. The two metals are formed into an alloy to make brass 6:40. What volume of brass would you expect to be created?

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 2 P3.2-Required Practical - To investigate the densities of regular and irregular solids and liquids.

Activation

LI:Plan and carry out an investigation to calculate the densities of different objects and liquids.
https://www.youtube.com/watch?v=ScXOp8Zph28
Make a note of the title and the LI

1. Read pages 86-87
2. List the key words and define the ones you don't know
3. Copy the results table above Q. 1 and add another column titled "Density in $\mathrm{g} / \mathrm{cm} 3$ " - you will complete this column when you answer Q.3.
Watch the video clip.

Demonstration

Attempt questions 1-7.
In 10 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in
blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.2 - To investigate the densities of regular and irregular solids and liquids.

Demonstration

Connection

1. volume $=3.35 \times 2 \times 1=6.7$ cm^{3}
density $=$ mass \div volume $=60 \div$ $6.7=8.96 \mathrm{~g} / \mathrm{cm}^{3}$
2. volume $=$ mass \div density $=$ $40 \div 7.14=5.60 \mathrm{~cm}^{3}$
3. volume $=6.7+5.6=12.3$ cm^{3}

1 The balance would also be recording the mass of the measuring cylinder.
2 Subtract the mass of the empty measuring cylinder to get the mass of the liquid.
3 Density = mass / volume
Coconut oil: $18.5 / 20=0.925 \mathrm{~g} \mathrm{/} \mathrm{~cm} 3$
Acetone: $19.6 / 25=0.784 \mathrm{~g} / \mathrm{cm} 3$
Sea water: $51.3 / 50=1.026 \mathrm{~g} / \mathrm{cm} 3$
4 Volume of cork $=2.0 \times 2.0 \times 3.0=12 \mathrm{~cm} 3$
Density of cork $=$ mass $/$ volume $=3 / 12=0.25 \mathrm{~g} /$ cm3
6 Density of oak $=$ mass $/$ volume $=17 /(2.0 \times 3.0 \times$
$4.0)=0.71 \mathrm{~g} / \mathrm{cm} 3$
Density of tin $=$ mass $/$ volume $=365 /(2.5 \times 2.5 \times$ $8.0)=7.3 \mathrm{~g} \mathrm{/} \mathrm{cm3}$
7 The data is only measured to 2 significant figures.
Therefore, the answer can only be given to two significant figures. It is incorrect to give any more significant figures as this suggests that the calculation is more accurate than it actually is.

Connection

Lesson 3: P3.3 - Changes of state

Activation

ㄴI: Describe and explain changes of state in terms of particles.

1. https://www.youtube.com/watch?v=KuOoTu8ZWqk
2. Make a note of the title and the LI
3. Read pages $88-89$
4. List the key words and define the ones you don't know
5. Draw and label Figures 3.7 and 3.8
, Watch the video clip

Demonstration

Attempt questions 1-8.
In 10 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.3 Changes of State

Connection

It is called Displacement.
The volume of water that is displaced by the solid is the same as the volume of the solid regardless of its mass, density or shape.

Demonstration

1 Freezing 2 You could place a block of ice in a container and then place the container on a balance. Record the mass and then wait for all of the ice to melt. Record the mass again and see whether the mass has changed. 3 e.g. Dry ice changing from a solid to a gas (sublimating). The material involved is carbon dioxide. (Dry ice is solid $\mathrm{CO} 2) 4 \mathrm{~A}$ freezing temperature is not necessarily a cold temperature. Some materials (e.g. tungsten) freeze at thousands of degrees Celsius. We are really only referring to the temperature at which water freezes. 5 This makes the surface area larger and so more evaporation can take place.
6 The fastest moving particles are the ones which
evaporate. When they leave the liquid, the average speed of the remaining particles is less(since the fastest ones have left). The temperature is related to the average speed and so the temperature decreases.
7 When you are burned by steam, the steam transfers energy to your skin when it is condensing. This is extra to the energy transferred to your skin when the hot water cools down.
8 Sweat is no colder than your skin. The cooling effect occurs because the sweat evaporates. Not all of the water molecules in the sweat move at the same speed and it is the ones that move the fastest that evaporate.
Therefore, the average speed of the molecules decreases as the sweat evaporates and this results in a lower temperature.

Connection

Lesson 4: P 3.4 - Internal Energy

1) What are the 6 processes involved in the changing of state of substances?
2) What is the name of the change of state which " misses out " the liquid stage ?
3) Give two examples of your answer to Q.2.

Activation

LI: Explain the internal energy of a system and the effect of heating on that system.

1. https://www.youtube.com/watch?v=5WVT5NROiLA
2. Make a note of the title and the LI
3. Read pages 90-91
4. Define the key words/terms
5. Draw and label figure 3.9 and 3.10
6. Watch the video clip

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Demonstration

Attempt questions 1-7.
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in
blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.4Internal Energy.

Connection 1)

- melling fimingulymuxididuinid
- freering: clanging fiom ligidid osolid
- boiling changing from liquid to ogsa the boiling point
- eraporating changing fiom liquid to gas when the temperature of fte liguid is overet than the

boiling point

- condensingr changing from qasto liguid
- sublimating: changing from solid to gas without going throught the lignid state.

2) Sublimation

3) Dry Ice ; Iodine Crystals.

Demonstration

1 They store kinetic energy because they are moving.
$2 E k=. m V 2$ and the particles have the same kinetic energy at the same temperature. This means that the heavy particles are moving slower than the light particles at the same temperature.
3 The particles store potential energy because they are separated from each other.
4 The internal energy is the total kinetic energy plus the total potential energy of the particles in the object.
5 The internal energy increases.
6 The water cools down, freezes and cools down again. All of this results in a decrease in internal energy.
7a The internal energy of steam at 1000 C is much higher than that of water at the same temperature. The internal energy would also include all of the latent heat of vaporisation.
7b Steam is able to transfer much more energy than water at the same temperature as its internal energy is so much higher.

Connection

Explain how the internal kinetic and potential energy of substances changes in the following situations. 1 Water is moved from a room temperature environment to a freezer.
02. Air is cooled to $-10^{\circ} \mathrm{C}$. 03.Steam condenses on a window sill.

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 5: P3.5 - Specific heat capacity

Activation

LI: Explain specific heat capacity

1. https://www.youtube.com/watch?v=TqJFIBODrjM
2. Make a note of the title and the LI
3. Read pages 92-93
4. Define Specific Heat Capacity
5. Draw the table on page 93
6. Watch the video (use link above)

Demonstration

Attempt questions 1-7.
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in
blue pen
Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.5

Connection.

1. Both internal energy and kinetic energy decreases. Only potential energy decreases during the freezing process.
2. Kinetic energy decreases greatly; internal energy also decreases but to a lesser extent.
3. Potential energy decreases drastically; kinetic energy does not decrease during condensation.

Demonstration

1 They move faster (gain kinetic energy) and they get further apart (gain potential energy). 2 There is a larger mass of water in the saucepan than there is in the cup. Therefore, more energy is needed. 3 Yes it will. The gain in internal energy of the milk is smaller when it heats up. Therefore, the decrease in internal energy will be smaller when it cools down, so the amount of energy transferred into the surroundings will be less. $4 \Delta E=m c \Delta \theta=0.1 \times 4200 \times(40-10)=12600 \mathrm{~J}$ 5 e.g. in cooling systems. Water passing through a car engine can stop the engine from heating up by absorbing some of the thermal energy. The water can absorb lots of energy into its thermal energy store without heating up very much. 6a Energy needed $=m c \Delta \theta$ for the copper $+m c \Delta \theta$ for the water $=(0.5 \times 380 \times 10)+(1 \times$ $4200 \times 10)=43900 \mathrm{~J} t=E / P=43900 / 2000=21.95 \mathrm{~s}=22 \mathrm{~s}$ (to 2 s.f.) $6 \mathbf{l}$ I have assumed that all of the energy from the heater has been transferred to the thermal energy stored in the water and in the copper kettle.
7 Copper is a very good conductor of heat - it has a very high thermal conductivity. It also has a low specific heat capacity so not much energy is needed to heat the saucepan up.

1. Calculate the mass of these objects: a). An aluminium ball ($c=$ $880 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$) that requires 10000 J to increase its temperature by $10^{\circ} \mathrm{C}$. b). A copper wire ($c=380$ $\mathrm{J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$) that transfers 300 J when its temperature decreases by $5^{\circ} \mathrm{C} . \mathrm{c}$). A cup of water ($\mathrm{c}=$ $4200 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$) that requires 84 000 J to increase its temperature by 20 degrees celsius.

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 6: P3.6 - Latent Heat

Activation

LI: Explain what is meant by latent heat and perform latent heat calculations.

1. https://www.youtube.com/watch?v=8VmkdzRE8sQ
2. Make a note of the title and the LO
3. Read pages 94-95
4. Define the key words on page 94 using the glossary.
5. Draw and label figure 3.12
6. Watch the video (use the link above)

Demonstration

Attempt questions 1-7.
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers:

P3.6 -

Latent heat

Connection

1.a. 1.14 kg . b. 0.15 kg .
c. 1 kg

Demonstration

1 The material is changing state. 2 As water turns into steam the particles get further apart. The particles therefore gain potential energy
and so they need energy to do this. 3 The particles are only gaining potential energy.
The energy in their kinetic energy store remains constant so the temperature remains the same.
4 When particles move from a solid into a liquid they don't move apart from each other very much.
However, when they move from the liquid state to a gas they move apart from each other a great deal and gain much more potential energy.
$5 E=m L=0.1 \times 340000=34000 \mathrm{~J}$
6a Melt the ice at $00 \mathrm{C}: E=m L=0.2 \times 340000=68$
000 J
Heat the water to $1000 \mathrm{C}: E=m c \Delta \theta=0.2 \times 4200$
$\times 100=84000 \mathrm{~J}$
Boil the water at 100 0C: $E=m L=0.2 \times 2260000$
$=452000 \mathrm{~J}$
Total energy transferred $=68000+84000+$
$452000=604000 \mathrm{~J}$
7 Energy is needed to heat the ice up to 00 C , melt the ice,

Connection

Use the table to complete the questions.
1Calculate how much energy is required to melt the following amounts of material at their respective melting points.
a. 1 kg of water
b. 0.5 kg of carbon dioxide
c. 100 g of ethyl alcohol
d. 3 kg of lead

Substance	Latent Heat of Fusion $(\mathrm{kJ} / \mathrm{kg})$	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Latent Heat of Vaporis ation $(\mathrm{kJ} / \mathrm{kg})$	Boiling $\left({ }^{\circ} \mathrm{C}\right)$
Water	340	0	2260	100
Carbon dioxide	180	-78	574	-57
Ethyl alcohol	108	-114	855	78
Lead	23	330	871	1750

Lesson 7: P3.7 Particle motion in gases

Activation

LI : Relate the temperature of a gas to the kinetic energy of its particles

1. https://www.youtube.com/watch?v=hKO3DpgilSk
2. Make a note of the title and the LO
3. Read pages 96-97
4. Define "eukaryotic"
5. Draw and label figures 3.15 and 3.16
6. Watch the video (use the link above)

Attempt questions 1-6.
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

think you understand well and one thing that you would like to ask your teacher

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you

Answers: P3.7 Particle

motion in gases.

Connection

a. 340 kJ
b. 90 kJ
c. 10.8 kJ
d. 69 kJ

Demonstration

1 The molecules move faster.
2 The temperature is related to the average kinetic energy of the molecules. The faster the molecules move, the higher the temperature.
3 The particles collide with the walls of their container. During the collision they exert a force on the walls. Since pressure = force / area, the force exerted by the particles produces a pressure on the container.
4 When you pump more air in a bicycle tyre there are more air particles. Therefore, there are more collisions between the particles and the walls of the tyre, which increases the pressure. 5 No gas can pass in or out of the container. 6 If the gas gets hotter, then the average kinetic energy of the particles increases. This means that the particles will move faster. This makes them collide with the container with a larger force and more often. Therefore, the pressure increases.

Connection

Describe, with the aid of diagrams, the motion of the air particles inside a sealed bag of potato crisps in each of the following situations. Think about how the bag might appear in each situation.

- 1) Bag is sat on a table at room temperature.
- 2) Bag is placed in an oven and warmed to $40^{\circ} \mathrm{C}$.
- 3) Bag is placed in a freezer overnight.

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 8 : P3.8 Increasing the pressure of a gas

Activation

ㄴI : Describe and explain the relationship between the pressure and volume of a gas. Also explain how doing work on a gas can increase it's temperature.

1. https://www.youtube.com/watch?v=RuoZqmNiMEo
2. https://www.youtube.com/watch?v=m19-8Vtewkw
3. Make a note of the title and the LI
4. Read pages 98-99
5. Define the word "compress"

Draw and label figure 3.17.
Watch the 2 videos (use the links above)

Demonstration

Attempt questions 1-8b.
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in
blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.8 Increasing the pressure of a gas.

Connection

You should clearly show that the air particles are moving fastest in situation two, and slowest in situation three, due to the respective higher and lower kinetic energies.

Be aware that particles should be the same size in all diagrams.

Pressure, temperature and average kinetic energy are greatest in situation two.

Pressure, temperature and average kinetic energy are lowest in situation three.

Diagrams may show that the bag has 'inflated' in situation two and 'deflated' in situation three. A slightly wrinkled bag may be shown in situation one.

Demonstration

1)The pressure decreases. 2) The pressure should double. 3) There are more collisions with the walls in a given time because the particles have a smaller distance to travel between each collision. This results in a larger average force on the walls and a higher pressure. 4) $\mathrm{p} 1 \times \mathrm{V} 1=\mathrm{p} 2 \times \mathrm{V} 2200 \times 4=\mathrm{p} 2 \times 3 \mathrm{P} 2=800 /$ $3=267 \mathrm{kPa}$. 5) p1 V1 $=\mathrm{p} 2 \times \mathrm{V} 21.8 \times 105 \times 80=1.2 \times 105 \times$ V2V2 $=144 \times 105 / 1.2 \times 105=120 \mathrm{~cm} 3$. 6) When you move the move the pump, the particles of gas colliding with the pump will end up moving faster. This increases the kinetic energy of the particles and so the internal energy increases. 7) The pump is doing work on the gas which heats up the gas. Since gas is not a very good conductor of heat, the region of the gas that gets hot remains near the pump. 8a) The internal energy of the gas must decrease since the gas is doing work as it expands. Therefore the temperature must decrease. 8b) An expanding gas reduces the temperature. So you can make the gas expand inside a fridge to reduce the temperature of the fridge.

Connection
1).Calculate the missing values

	$\begin{aligned} & P_{1} \\ & (\mathrm{kPa}) \end{aligned}$	$\begin{aligned} & V_{1} \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{1} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & P_{2} \\ & (\mathrm{kPa}) \end{aligned}$	$\begin{aligned} & V_{2} \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{2} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$
a	100	24	22.5	200		22.5
b	50		-8	100	50	-8
C	12	1000		50	240	24
d		750	18	1500	200	18
e	90	50	10		225	10
f	34	43	6	100		6
g	300	1000	33		6000	33
h	200		30	100	48	30

Consolidation

Complete and self-assess the relevant past paper question for this topic From the P3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 9 P3.9 Particle Model and Changes of State

Activation

LI: Use the particle model to explain states of matter and the relationship between temperature and energy.

1. https://www.youtube.com/watch?v=xYU7RSoOZOU
2. Make a note of the title and the LI
3. Read pages $100-101$
4. Define the key words using the glossary.
5. Draw and label figures $3.19,3.20,3.21$ and 3.22 .
6. Watch the video (use the link above)

Demonstration

Attempt questions 1-5.
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in
blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: P3.9

Connection

P	$\mathrm{P}_{1}(\mathrm{kPa})$	$\mathrm{V}_{1}\left(\mathrm{~cm}^{3}\right)$	$\mathrm{T}_{1}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{2}(\mathrm{kPa})$	$\mathrm{V}_{2}\left(\mathrm{~cm}^{3}\right)$	$\mathrm{T}_{2}\left({ }^{\circ} \mathrm{C}\right)$
a	100	24	22.5	200	12	22.5
02.	50	100	-8	100	50	-8
b	50	12	1000	24	50	240
c	24					
d	400	750	18	1500	200	18
e	90	50	10	20	225	10
f	34	43	6	100	14.62	6
g	300	1000	33	50	6000	33
h	200	24	30	100	48	30

Demonstration

1) In a solid, the atoms and molecules vibrate around a fixed point. In a liquid the atoms and molecules can move past each other.
2) The particles vibrate with a larger amplitude. Therefore, their average separation increases.
3) The internal energy increases. This is because the potential energy increases from the particles getting further apart and the kinetic energy increases from the particles vibrating with a greater speed.
4)

5) The material is cooling down.

