Science KS4: Blended Learning Booklet

C3 Chemical quantities and calculations

Name:

Form:

Aim to complete four lessons each week. Watch the videos and follow the four part lesson plan All video clips are online using the ClassCharts link. Upload all work onto ClassCharts for feedback.

The online textbook has all the key information and vocabulary to help you with this unit To log on to the online textbook:

- https://connect.collins.co.uk/school/portal.aspx
- Type in "stewards" and select Stewards Academy
- Login using your date of birth, initial of your surname and your academic year

School name: Stewards Academy - CM18 7NQ(CM18 7NQ) : Not your school? Date of birth $25 \vee$ Decembe \vee First letter of surname C Year group Year 11 \checkmark

Contents	Contents
Title page	Lesson 11 (T)
Contents	Lesson $12(T)$
Big Picture - Overview	Lesson 13
Zoom in - My Learning Journey	Lesson - Revision
Lesson 1	SAL
Lesson 2	
Lesson 3	(T) = Triple scientists only
Lesson 4	
Lesson 5	
Lesson 6	
Lesson 7	
Lesson 8	
Lesson 9 (T)	
Lesson 10 (T)	

ZOOM IN...
 MY LEARNING JOURNEY:

Properties of matter

- Reactivity series
- Oxidation reactions
- Neutralisation
- Electrolysis
- Redox reactions

Subject: Chemical quantities Year: 9 Unit: C3

AIMS
This unit will build on ideas about
elements, compounds and chemical
eactions; concepts that students
have learned. Students will improve
their ability to work with symbols
and equations. They will learn to
calculate relative formula masses
and will be introduced to
moles. Students will use moles to
calculate reacting masses and to
balance equations. They will find
but how concentration is expressed
and use this in simple titrations.

PREVIOUS LEARNING
Pupils will have some knowledge acquired at KS3 regarding how
 chemicals change during a reaction REMEMBER but are not destroyed. The idea that gases have a mass, being able to measure quantities such as mass in g, volume in cm 3 , and time in s They will be used to recoding and presenting data as a graph and using it to carry out further calculations. They will have carried out experiments to make salt crystals.

C That it is possible to courage reactions extremely precisely
O To investiagete how quantities of chemicals are calculated.
U Understand why equations balance
R Carrying out calculations
A The skill of scientists who historically
discovered the mole
G Work together and share our understanding
E Being able to calculate the world at a molecular level.

\qquad

-

...

CAREERS
Synthetic
Chemist

- Industrial
chemist Gas engineer

RECOMMENDED READING . Easy As: Basic Chemistry (Easy As: Human Physiology) by Janelle McAlpine Easy As Measures of Concentration (Easy as Human Physiologyby Janelle McAlpine Easy As: Calculating Concentration (Easy As: Human Physiology) by Janelle McAlpine

Connection

Have a look at the topic overview and the C3 zoom in.

Populate what you know and your personal objectives.

Lesson 1: C3.1 - Key concept: Conservation of mass and balanced equations

Activation

ㄴII: Explain the law of conservation of mass and why chemical equations have

 numbers in them1. https://www.youtube.com/watch?v=JCyjLPYXI1I
2. https://www.youtube.com/watch?v=vxCyzR6uETs
3. Make a note of the title and the LI
4. Read pages 98-99
5. List the key words

Explain why an element in a chemical formula may have a small-number after it

Demonstration

Attempt questions 1-5
In 15 mins answer as many questions as you can.
Self-mark the questions you have done making any necessary corrections in
blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.1 - Key concept

Connection	Demonstration
1 NA	1 ZY or YZ
2 NA	
3 NA	24
	$3 \mathrm{Na}=2, \mathrm{~S}=2, \mathrm{O}=3$
	$4 \mathrm{Al}=2, \mathrm{~S}=3, \mathrm{O}=12$
	$5 \mathrm{ad}=2, \mathrm{e}=1, \mathrm{f}=1, \mathrm{~g}=2$
	b $d=1, e=5, f=3, g=4$

Connection

Q1. List the elements and quantity of each in $\mathrm{H}_{2} \mathrm{SO}_{4}$

Q2. Balance the following equation: $\mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Lesson 2: C3.2 Relative formula mass

Activation
 LI: Identify the relative atomic mass of an element and use this to calculate the mass of a compound from its formula

1. https://www.youtube.com/watch?v=MGLrYal UfE
2. Make a note of the title and the LI
3. Read pages 100-101
4. List the key words
5. https://www.youtube.com/watch?v=it fMQu5ivg

Describe how you calculate relative formula mass

Demonstration

Attempt questions 1-7
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.2 - Relative formula mass

Connection	Demonstration
	180
1. $2 \times \mathrm{H} 1 \times \mathrm{S} 4 \times \mathrm{O}$	2 Protons Neutrons
	12C 66
2. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	13C 67
	14C 68
	3 Some elements have more than one isotope which have the same atomic number but different mass number (different
	number of neutrons). The atomic masses are averaged
	according to the proportion of each isotope in a naturally
	occurring sample.
	4120
	5187.5
	$6 \mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{AgBr}$
	$1842 \times 1701482 \times 188$
	Reactants $=524$
	Products = 524
	7 Molecular mass of $R=44$. Molecular formula of $R=\mathrm{C}_{3} \mathrm{H}_{8}$

Connection

Q1. What is the relative atomic mass of hydrogen H , sulphur S and oxygen O ?

Q2. Calculate the relative formula mass of sulphuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Lesson 3: C3.3 - Mass changes when gases are in a reaction

Activation

LI: Explain the mass changes in reactions where gases are given off or taken in

1. https://www.youtube.com/watch?v=TV6n5MFH6IU
2. Make a note of the title and the LI
3. Read pages 102-103
4. List the key words
5. Describe how we can calculate the mass of gas given off or taken in by a reaction
6. Explain how reactions can end because of a limiting reactant (HT)

Consolidation

Complete and self assess the relevant past paper question for this topic From the C3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Demonstration

Attempt questions 1-9 (6-9 HT).
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.3 - Mass changes when gases are in reactions

 Demonstration

 Demonstration}

Connection
$\begin{array}{llll}1 & H-1 & S-32 O-16 \\ 2 & 2 \times 1 & 1 \times 32 & 4 \times 16=98\end{array}$

51.6 g

68 minutes. Graph is horizontal meaning no more mass is being lost so the reaction is finished. The acid was in excess and all the magnesium carbonate has been used up.

8 a Nitric acid. Zinc was left at the end of the reaction so was not the limiting reactant.
b 3.62 g of zinc and 6.97 g of nitric acid. 9 Mass of O 2 gained $=2 \times 32=64$. Mass of CO2 lost $=2 \times 44=88$. So $88-64=24 \mathrm{~g}$ of mass lost overall.

Connection

Q1. When calcium carbonate is heated it undergoes thermal decomposition in the reaction $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
10 g How much CaO is produced?

Q2. $2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$ How much MgO is made from 24 g of Mg ?

Consolidation

Complete and self assess the relevant past paper question for this topic From the C3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Lesson 4: C3.4 - Chemical measurements and uncertainty

Activation

LI: Be aware that any measurement cannot be guaranteed to be accurate and be able to estimate the degree of accuracy.

1. https://www.youtube.com/watch?v=ae4NMm763mM\&feature=youtu.be
2. Make a note of the title and the LI
3. Read pages $104-105$
4. List the key words
5. Describe how this uncertainty comes about
6. Describe what we mean by the range of a measurement

Demonstration

Attempt questions 1-4.
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections
in blue pen
Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.4 - Chemical measurements and uncertainty
 Connection
 Q1. 5.6 g
 Q2. 40 g
 Demonstration
 1 Between 25.25 and 25.35 cm3
 2 Group A
 3 The range is the difference between the highest measurement and the lowest measurement. The mean is the sum of the measurements divided by the number of measurements
 4 8\%

Connection

Q1. What is range of values for the following measurement $25.6 \mathrm{~g} \pm 0.05$

Q2. A set of measurements had a range of results from 12.2 cm to 12.9 cm with a mean of 12.5 cm . Calculate the percentage uncertainty for this data.
percertage uricertariny ior tio nuta.

Consolidation

Complete and self assess the relevant past paper question for this topic From the C3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Activation

니: Describe how a mole is equal to a substance's relative formula mass in grams

1. https://www.youtube.com/watch?v=- -fNVmDwJk
2. Make a note of the title and the LI
3. Read pages $106-107$
4. List the key words
5. Describe what a mole is, the symbol for a mole and what Avogadro's number is
6. Explain how to calculate molar mass

Demonstration

Attempt questions 1-6
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.5 - Moles

Connection

Q1. $25.55 \mathrm{~g}-25.65 \mathrm{~g}$
Q2. Range 0.7 cm
Mean 12.5 cm
Uncertainty (\%) = Range \div Mean $\times 100$
$0.7 \div 12.5 \times 100=5.6 \%$

Demonstration

118 g
$23 \times(39+80)=357 g$
$32 \times 6.02 \times 1023=1.204 \times 1024$
4 a $28 \mathrm{~g} / \mathrm{mol}$
b $81 \mathrm{~g} / \mathrm{mol}$
c $84 \mathrm{~g} / \mathrm{mol}$
d $132 \mathrm{~g} / \mathrm{mol}$
$572 / 18=4$ moles
6 a 2 moles
b 4 moles of $\mathrm{H}_{2}=4 \times 2=8 \mathrm{~g}$.

Connection

Lesson 6: C3.6 - Amounts of substances in equations (HT and T only)

Q1. What mass of oxygen is in 1 mole of the gas?

Q2. What mass of oxygen would you have if you had 2 moles?

Q3. What is the relative molar mass M_{r} of ZnCO_{3} ?

Activation

LI: How to calculate the masses of reactants and products from a balanced symbol equation

1. https://www.youtube.com/watch?v=TV6n5MFH6IU\&t=1s
2. Make a note of the title and the LI
3. Read pages 108 - 109
4. List the key words
5. Write down the worked examples for each subheading: Masses of substance from an equation, Measuring the number of moles in different ways and Predicting masses

Demonstration

Attempt questions 1-5
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.6 - Amounts of substances in equations (HT and T only)

Connection

Q1. $\mathrm{O}_{2}=2 \times 16=32 \mathrm{~g}$
Q2. 2 moles of $\mathrm{O}_{2}=32 \mathrm{~g} \times 2=64 \mathrm{~g}$
Q3. $\mathrm{Zn}=65 \quad \mathrm{C}=12 \quad \mathrm{O}=16 \times 3$
$65+12+48=125 \mathrm{~g} / \mathrm{mol}$

Demonstration

1 Moles $\mathrm{Mg}=6.0 / 24=0.25 .1: 1$ ratio.
So $0.25 \times 40=10 \mathrm{~g}$.
2 Moles $\mathrm{MgO}=2.0 / 40=0.05$. 1:1 ratio.
So $0.05 \times 24=1.2 \mathrm{~g}$.
3 Ratio $\mathrm{C}_{3} \mathrm{H}_{8}: \mathrm{H}_{2} \mathrm{O}=1: 4$. So 6:24. 24 moles $\mathrm{H}_{2} \mathrm{O}$.
4 Moles $\mathrm{ZnCO}_{3}=1.25 / 125=0.01$. $1: 1$ ratio.
So mass $\mathrm{ZnO}=0.01 \times 81=0.81 \mathrm{~g}$.
5 Moles $\mathrm{CuO}=7.95 / 79.5=0.1 .1: 1$ ratio.
So mass $\mathrm{CuCO}_{3}=0.1 \times 123.5=12.35 \mathrm{~g}$.

Connection

Q1. Balance the following equation: $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Q2. How many grams of carbon dioxide are produced for every 1 mole of ethane burned?

Lesson 7 C3.7 - Using moles to balance equations (T only)

Activation

LI: Use the molar ratios of reactants and products to balance an equation

1. https://www.youtube.com/watch?v=4wTSLBBBMo0
2. Make a note of the title and the LI
3. Read pages $110-111$
4. List the key words
5. Write down the worked examples from the book

Consolidation

Complete and self assess the relevant past paper question for this topic From the C3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Demonstration

Attempt questions 1-3
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.7 - Using moles to balance equations

Connection

Q1. $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Q2. M_{r} of carbon dioxide is $12+(2 \times 16)=44 \mathrm{~g} / \mathrm{mol}$ 2 moles of ethane produces 4 moles of carbon dioxide, so 1 mole of ethane produces 2 moles of carbon dioxide. 1 mole of CO_{2} has a mass of 44 g so 2 moles has a mass of 88 g .

Demonstration

1 "Tonne" moles $\mathrm{MgCO}_{3}=84 / 84=1.1: 1$ ratio. So mass of $\mathrm{MgO}=$ $1 \times 40=40$ tonnes.
2 Moles $\mathrm{Al}_{2} \mathrm{O}_{3}=204 / 102=2$.
Moles AI = 108/27 = 4
3 By conservation of mass, mass of $\mathrm{O}_{2}=204-108=96 \mathrm{~g}$. Moles $\mathrm{O}_{2}=96 / 32=3$. Moles $\mathrm{Al}_{2} \mathrm{O}_{3}=2$. Moles $\mathrm{Al}=4$. $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$

Connection

Q1. What is the state symbol for an aqueous solution?

Q2. What is the relative formula mass $\left(\mathrm{M}_{r}\right)$ for ethane $\mathrm{C}_{2} \mathrm{H}_{6}$?

Lesson 8: C3.8 - Concentration of solutions

Activation

- LI: Explain how we can relate mass, volume and concentration to calculate the mass of solute in solution

1. https://www.youtube.com/watch?v=kJBbu7 vYC8
2. Make a note of the title and the LI
3. Read pages 112-113
4. List the key words
5. Write down the units used in calculations and the worked examples
6. Make a highlighted note that $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}=1000 \mathrm{ml}=1$ litre

Demonstration

Attempt questions 1-10
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.8 - Concentration of solutions

Demonstration

Connection

Q1. (aq)
Q2. A_{r} for $\mathrm{C}-12$ for $\mathrm{H}-1$
$(2 \times 12)+(6 \times 1)=30 \mathrm{~g} / \mathrm{mol}$

1 a) $200 \mathrm{~g} / \mathrm{dm}^{3}$
b) $20 \mathrm{~g} / \mathrm{dm}^{3}$
c) $160 \mathrm{~g} / \mathrm{dm}^{3}$

So b, c, a..
2 a) $\left.\left.32 \mathrm{~g} / \mathrm{dm}^{3} \mathrm{~b}\right) 12.8 \mathrm{~g} / \mathrm{dm}^{3} \mathrm{c}\right) 12.8 \mathrm{~g} / \mathrm{dm}^{3}$
$34.2 \times(250 / 1000)=1.05 \mathrm{~g}$
$45.4 \times(35 / 100)=1.89 \mathrm{~g}$
$51 / 2=0.5 \mathrm{dm}^{3}$
$60.18 / 0.6=0.3 \mathrm{~mol} / \mathrm{dm}^{3}$
7 Moles $=(500 / 1000) \times 3=1.5$
$84.90 / 98=0.05$ moles $\mathrm{H}_{2} \mathrm{SO}_{4}$
Concentration $=0.05 \times(1000 / 200)=0.25 \mathrm{~mol} / \mathrm{dm}^{3}$
9 a $0.0250 \times(1000 / 125)=0.200 \mathrm{~mol} / \mathrm{dm}^{3}$
b $0.200 \times 63=12.6 \mathrm{~g} / \mathrm{dm}^{3}$
10 a $8.25 / 36.5=0.5 \mathrm{~mol} / \mathrm{dm}^{3}$
b $0.500 \times 6.02 \times 1023=3.01 \times 1023$

Connection

Q1. How do you calculate 0.8 as a percentage?

Q2. If a pupil scored $35 / 50$ in a test, what was their percentage score?

Q3. What is 72% of 1000 ?

Lesson 9: C3.9 - Key concept: Percentage yield

Activation

LI: How to calculate the percentage yield from the actual yield and (HT + T) calculate theoretical product amounts from reactant amounts.

1. https://www.youtube.com/watch?v=hnawBsyZTc8
2. Make a note of the title and the LI
3. Read pages 114-115
4. Explain the reasons we get less products from chemical reactions than we would expect if they were 100\%
5. Explain how we calculate percentage yield
6. Explain how we calculate theoretical yield $(\mathrm{HT}+\mathrm{T})$

Demonstration

Attempt questions 1-6
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.9 - Percentage yield

Connection

Q1. $0.8 \times 100=80 \%$
Q2. $35 \div 50 \times 100=70 \%$
Q3. $72 \div 100=0.72$
$0.72 \times 1000=720$

Demonstration

1 Loss in filtration; loss due to evaporation; loss in transferring liquids
230%
3 60\%
4 63g
5 85\%
6 a 35.5 g
b 18.2 g

Connection

Lesson 10: C3.10 - Atom economy (TRIPLE)

Q1. A chemical reaction gave us 26.4 g of product when the theoretical yield was 35.2 g . Calculate the percentage yield achieved.

Q2. The thermal decomposition of calcium carbonate yields calcium oxide. Calculate the theoretical yield for this reaction if we started with 50 g of calcium carbonate.

Consolidation

Complete and self assess the relevant past paper question for this topic From the C3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Activation

LI: Calculate the atom economy of a reaction to form a product and explain why a particular reaction pathway is chosen.

1. https://www.youtube.com/watch?v=h1-Vj6eh-mM
2. Make a note of the title and the LI
3. Read pages 116-117
4. Define the term "atom economy"
5. Explain how to calculate the atom economy for a chemical reaction
6. Consider the reasons why we might choose one chemical pathway over another

Demonstration

Attempt questions 1-6
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.10 - Atom economy (TRIPLE)

Connection

Q1. $26.4 \div 35.2 \times 100=75 \%$
Q2. M_{r} for CaCO_{3} is 100 so 50 g is 0.5 of a mole of CaCO_{3}

1 mole of CaCO_{3} produces 1 mole of CaO
M_{r} for CaO is 56 so 0.5 of a mole is 28 g

So the theoretical yield of CaO from 50 g of CaCO_{3} is 28 g

Demonstration

1100 \% (only one product)
2 b) Greater than 0 but less than 100 \%
3 Method 1: $(568 / 676) \times 100=84 \%$
Method 2: $(568 / 624) \times 100=91 \%$
4 If there were 2 products and only 1 was the desired product, it could have an atom economy of 64%. If both products were desired, then it has a 100% atom economy.
5 The production of SO_{2} is a by-product of burning coal. The atom economy is 100% since there is only one product. This would suggest that there is no waste. However, SO_{2} is a pollutant, forming acid rain in the presence of water.
6 Atom economy of the Haber process is 100 \% since ammonia is the only product. For the ammonium chloride reaction, the atom economy is 19%. The Haber process is more sustainable if atom economy is considered. However, there are other factors. For instance, if all the products were desirable for the ammonium chloride process then its atom economy would also be 100%. Also, the following need to be taken into account: amount of energy consumed to make ammonia, whether the raw materials are finite and non-renewable and whether the process is polluting.

Lesson 11: C3.11 - Using concentrations of solutions (TRIPLE)

Connection

Q1. Why do we care about the atom economy of industrial reactions?

Q2. Why when we carry out school lab reactions not generally interested in atom economy?

Q3. How many cm^{3} are there in $1 \mathrm{dm}^{3}$?

Activation

-ㄴI: Describe how to carry out titrations and calculate the concentrations in titrations in $\mathrm{mol} / \mathrm{dm}^{3}$ and in $\mathrm{g} / \mathrm{dm}^{3}$

1. https://www.youtube.com/watch?v=3G3KQlyoZDI
2. Then watch https://www.youtube.com/watch?v=xsma3KjKPx8
3. and https://www.youtube.com/watch? $\mathrm{v}=\mathrm{Z93}$ atEmxNI
4. Make a note of the title and the LI
5. Read pages 118-119
6. List the key words
7. Write down the steps in a titration and draw how to read a burette

Describe how we calculate the unknown concentration of the solution after titration

Demonstration

Attempt questions 1-5
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.11 - Using concentrations of solutions (TRIPLE)

Connection

Q1. A poor atom economy is wasteful of expensive reactants and the cost of dealing with waste byproducts in terms of money and environmental costs. Costs from transport of reactants or waste or their safe treatment add to costs.

Q2. The quantities of products made in labs is small and the costs are therefore less important than convenience.

Q3. $1000 \mathrm{~cm}^{3}$ in $1 \mathrm{dm}^{3}$

Demonstration

1 To the bottom of the curve (meniscus). $42.5 \mathrm{~cm}^{3}$
2 Pipette delivers a fixed volume. The burette delivers a variable volume.
3 Because it is used to give a rough idea of the end point. It is not meant to be accurate.
$426.8 / 26.9 / 26.7$. Average titre $=26.8 \mathrm{~cm}^{3}$
5 Moles hydrochloric acid $=(23.8 / 1000) \times 0.11=0.002618$. Ratio $\mathrm{HCl}: \mathrm{NaOH}=1: 1$.
Concentration $\mathrm{NaOH}=0.002618 \times(1000 / 25)=0.105 \mathrm{ml} / \mathrm{dm}^{3}$

Connection

Q1. It took 37.5 cm 3 of 0.5 M HCl to neutralise 25 cm 3 of an unknown concentration of NaOH . Calculate the concentration of the alkali solution.

Activation

니: Explain that the same amount of any gas occupies the same volume at room temperature and pressure (rtp) and calculate the volume of a gas at rtp from its mass and relative formula mass

1. https://www.youtube.com/watch?v=Qn5CgfokdWkand this https://www.youtube.com/watch?v=tYE-1nywIFs
2. Make a note of the title and the LI and read pages 120-121
3. Explain how for a given volume of a gas it will have the same number of particles as any other type of gas, but may have a different mass due to the chemical composition of the gas particles themselves
4. State the volume of a mole of gas at rtp and how we can use this in calculations

Demonstration

Attempt questions 1-8
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.12 - Amounts of substance in volumes of gases (TRIPLE)

Connection

Q1. Number of moles of acid titrated:
$37.5 \mathrm{~cm}^{3} \div 1000=0.0375 \mathrm{dm}^{3}$
$0.0375 \mathrm{dm}^{3} \times 0.5 \mathrm{M}=0.01875$ moles
Volume of alkali:
$25 \mathrm{~cm}^{3} \div 1000=0.025 \mathrm{dm}^{3}$
Using the following equation:
amount of moles $=$ concentration \times volume
Concentration of alkali = amount of moles of acid \div volume of alkali

Conc. of alkali $=0.01875 \div 0.025$

$$
=0.75 \mathrm{M}
$$

Demonstration

144 g
$2(8.8 / 44) \times 24=4.8 \mathrm{dm}^{3}$
3 Moles $\mathrm{NO}_{2}=46 / 46=1$.
Moles $\mathrm{Kr}=84 / 84=1$.
1 mole (molecular/formula mass) of any gas occupies $24 \mathrm{dm}^{3}$ at rtp.
$41.5 \times 24=36 \mathrm{dm}^{3}$
5 Moles $\mathrm{N}_{2}=7 / 28=0.25$. Volume $=0.25 \times 24=6 \mathrm{dm}^{3}$
6 Ratio $\mathrm{C}_{3} \mathrm{H}_{8}: \mathrm{H}_{2} \mathrm{O}=1: 4$. Therefore 1.5:6 dm 3 . So $6 \mathrm{dm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$ is produced.
$7 \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Ratio $\mathrm{C}_{5} \mathrm{H}_{12}: \mathrm{CO}_{2}=1: 5$. So for $2 \mathrm{dm}^{3}$ of $\mathrm{C}_{5} \mathrm{H}_{12}, 10 \mathrm{dm}^{3}$ of CO_{2} is formed.
8 Moles $\mathrm{N}_{2}=42 / 28=1.5$. So 4.5 moles H_{2} needed ($1: 3$ ratio). Volume $=4.5 \times 24=108 \mathrm{dm}^{3}$.

Connection

Lesson 13: C3.13 - Key concept: Amounts in chemistry

Q1. State the law of conservation of mass in chemical reactions.

Q2. What is the volume taken up by: 1 mole of gas at rtp?
0.1 mole of a gas at rtp? 1 mole of gas at rtp in cm^{3} ?

Activation
니: Describe how to calculate formula mass, ($\mathrm{HT}+\mathrm{T}$) how this relates to moles and (T) quantities of substances

1. https://www.youtube.com/watch?v=kMak1TQ3YgU
2. Make a note of the title and the LI
3. Read pages $122-123$
4. Draw diagrams which explain how you calculate formula mass
5. Describe what a mole is and how a molar mass is calculated from this
6. Describe, with examples of how we use moles in calculations involving titrations and gases

Consolidation

Complete and self assess the relevant past paper question for this topic From the C3 DIP file

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Demonstration

Attempt questions 1-8
In 15 mins answer as many questions as you can.
Self mark the questions you have done making any necessary corrections in blue
pen

Challenge yourself to answer as many as you can:
Green questions to GCSE Level 3
Blue questions to GCSE Level 6
Purple questions to GCSE Level 9

Answers: C3.13 - Key concept: Amounts in chemistry

Connection

Q1. No matter is created or destroyed in a chemical reaction.

Q2. $24 \mathrm{dm}^{3}$
$2.4 \mathrm{dm}^{3}$
$24,000 \mathrm{~cm}^{3}$

Demonstration

$124+32+(4 \times 16)=120$
$2 \mathbf{a} 40+((14+(3 \times 16)) \times 2)=164$
b $(2 \times 27)+((32+(4 \times 16)) \times 3)=342$
$340 \mathrm{~g} / \mathrm{mol}$
$42 \times 6.02 \times 1023=1.024 \times 1024$
5 Mass $\mathrm{NaOH}=0.5 \times 40=20 \mathrm{~g}$
6 Moles $\mathrm{H}_{2}=4 / 2=2$. 1 mole of any gas occupies $24 \mathrm{dm}^{3}$ at rtp . So $2 \times 24=$ $48 \mathrm{dm}^{3}$
7 Moles $\mathrm{ZnCO}_{3}=6.25 / 125=0.05$. Moles $\mathrm{ZnO}=0.05$ since $1: 1$ ratio.
So mass $\mathrm{ZnO}=0.05 \times 81=4.05 \mathrm{~g}$.
8 Moles $\mathrm{C}_{3} \mathrm{H}_{8}=660 / 44=15$. Moles CO_{2} produced $=15 \times 3=45$ (1:3 ratio).
Mass $\mathrm{CO}_{2}=45 \times 44=1,980 \mathrm{~g}$.

Connection

P3-Revision
Q1. State the relative atomic masses of an atom of Ca, C and O from the periodic table.
Q2. Calculate the relative formula mass of CaCO_{3}.
Q3. What mass is 0.25 moles of calcium carbonate?
Q4. What volume of CO_{2} is given off if 0.25 moles of calcium carbonate are thermally decomposed?

Consolidation

Look though the relevant past paper questions for this topic - From the C3 DIP file - see if you can complete any additional questions

Extension

Make a note of one thing you think you understand well and one thing that you would like to ask your teacher

Activation

LI: Create a topic summary sheet

1. Fold an A 3 sheet so it is divided into 8 sections
2. Look back over your lessons and group them into 8 main headings
3. Summarise the key points into each section, use keywords and diagrams and symbols rather than sentences

Demonstration

Test yourself by working with the person sitting next to you by talking though each box on your summary sheet and seeing how many key facts you can remember.

Connection Answers

```
1 Ca-40 C-12 O-16
2 CaCO }\textrm{Ca}-40+\textrm{C}-12+3\times\textrm{O}-16(48)=10
3 100 x 0.25=25g
4 24dmm}\times0.25=6\mp@subsup{d}{m}{3
```


C3 DART - The mole

Textbooks need an update after mole's definition changed

Although little will change in practice, lupac's new definition of a mole has gained support from (almost) all sides
'A mole contains as many elementary entities as there are atoms in 12 g of carbon-12' is what many chemists - and schoolchildren would say when asked to define a mole. But this textbook definition is now set to be rewritten by the International Union of Pure and Applied Chemistry (lupac).
lupac's new definition relies solely on a fixed value of the Avogadro constant (named after Amadeo Avogadro) and describes the mole as containing exactly $6.02214076 \times 10^{23}$ elementary entities. The redefinition is part of efforts to modernise the international system of units (SI). The driving force for the change was to break the link between the kilogram artefact and the unit that it defines.
'It became clear during the international survey we did that many people did not like the current definition of the mole,' says Juris Meija from the National Research Council Canada and part of lupac's mole task group. 'The previous definition has an indirect logic in that the mole is defined as having as many entities as there are in a specified mass of something else. The new definition simply cuts to the chase with its clear logic.'

In practice, however, the redefinition will have little impact. 'Currently, there is absolutely no technological benefit that the new definition provides,' says Meija. Although fixing the Avogadro constant could theoretically have impacts on high precision measurements, Meija explains that 'we are currently at least four orders of magnitude away from being able to take advantage of [this]'.

Those working in education welcome the change. 'The new definition is well aligned with what students already use in practice,' says chemistry education researcher Marcy Towns from Purdue University, US, also a member of lupac's task group. 'It's not going to have a big impact on what people do in the classroom,' she says. 'Although of course textbooks have to change.'

However, some critical voices question the new definition's practicality. In a letter to lupac, the French Committee for Chemistry wrote that by disconnecting the definition from a measurable mass, the mole's definition is too far removed from what is done in practice. After all, substances are weighed to determine the amount of moles contained within, they argue.

Questions

1a. How many particles does 1 mole contain? b. What was the name of the scientist who came up with this number
c. What quantity is needed to determine the number of moles in a substance.

2a. Explain the difference between the old and

 new definition of the moleb. Explain the implications of redefining the mole
c. Explain the impact on education of the new definition.

3a. Evaluate the usefulness of the new definition for the mole
b. A student said "the Avogadro number is too big" do you agree with her? Explain why.
c. What is your opinion of using a mole to measure amount of substances? What changes if any, would you make?

Article from chemistryworld.com
https://www.chemistryworld.com/news/textbooks-need-an-update-after-moles-definition-changed/3008537.article
Reference:
1a. $6.02214076 \times 10^{23}$
1b. Amadeo Avogadro
1c. The mass of the substance and its molar mass

2a. From the text: 'A mole contains as many elementary entities as there are atoms in 12 g of carbon-12'
"Iupac's new definition relies solely on a fixed value of the Avogadro constant (named after Amadeo Avogadro) and describes the mole as containing exactly $6.02214076 \times 10^{23}$ elementary entities."

The first quote gives the old definition and the second gives the new definition by IUPAC. The main difference can be explained by using the following from the text:
 chase with its clear logic.'
 orders of magnitude away from being able to take advantage of [this]"
 present time, this is not something that we are able to do.
 also a member of lupac's task group. 'It's not going to have a big impact on what people do in the classroom,' she says. 'Although of course textbooks have to change.'
it will not have a big impact on the classroom as it is similar to what students presently use. The only major change will be that textbooks will need to be edited.
 (atoms in 12 g of Carbon-12). Logistically however, the redefinition means that textbooks will have to be changed which will provide challenges for teachers and schools.

 the amount of a substance. More detailed answers may include why using moles is better than mass eg reacting masses in equations.

