Maths Spring 2

Year 10 Higher

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 10 Overview
Page 4: Knowledge Organiser
Page 5-9: Week 1 - Simultaneous Equations (Elimination method)
Page 10-13: Week 2 - Simultaneous Equations (Substitution \& Graphical methods)

Page 14 - 19: Week 3 - Probability, Sample Space Diagrams, Twoway Tables, and Relative Frequency

Page 20 - 24: Week 4 - Product Rule for Counting and Probability Trees

Page 25 - 30: Week 5 - Set Notation and Venn Diagrams
Page 31 - 34: Week 6 - Statistics Recap: Box Plots, Cumulative Frequency, and Histograms

Page 35: Assessment Ladder

SStewards Academy

Stewards Academy

Week 1:

- LI: I can solve simultaneous equations using the elimination method

Demonstration Videos:

https://corbettmaths.com/2013/03/05/simultaneous-equations-elimination-method/

Tasks:

Question 1: Solve the following simultaneous equations by using elimination.
(a) $6 x+y=18$
$4 x+y=14$
(b) $4 x+2 y=10$
$x+2 y=7$
(c) $\quad 9 x-4 y=19$
(d) $2 x+y=36$
$x-y=9$
(e) $\quad \begin{aligned} 6 x-3 y & =12 \\ 4 x-3 y & =2\end{aligned}$
(h) $x+3 y=38$
$x+6 y=53$
(i) $6 x+3 y=48$
$6 x+y=26$
(j) $2 x-4 y=10$
$2 x+3 y=24$
(k) $5 \mathrm{x}-2 \mathrm{y}=120$
$5 x+y=165$
(l) $x-2 y=8$
$x-3 y=3$
(m) $3 x+2 y=54$
$2 x-2 y=16$
(n) $7 x-4 y=80$ $3 x-4 y=-80$
(o) $5 x-2 y=-23$
$5 x-6 y=-39$
(p) $6 x+2 y=-26$
$2 x+2 y=-10$
(q) $x-5 y=65$
$2 x-5 y=85$
(r) $\quad \begin{aligned} & 10 x-10 y=-40 \\ & 10 x+4 y=16\end{aligned}$

Solve simultaneously

1) $x+2 y=8$
$3 x+2 y=12$
2) $\begin{aligned} & 3 x+y=7 \\ & 3 x+2 y=11\end{aligned}$
3) $\begin{aligned} & x+3 y=5 \\ & 2 x+3 y=4\end{aligned}$
4) $\begin{aligned} & 4 x-y=10 \\ & 3 x-y=8\end{aligned}$
5) $\quad \begin{aligned} & 2 x-y=7 \\ & 2 x+3 y=3\end{aligned}$
6) $\begin{aligned} & x+5 y=2 \\ & 2 x+5 y=-1\end{aligned}$

Solve simultaneously

1) $\begin{aligned} & x+2 y=6 \\ & 3 x-2 y=10\end{aligned}$
2) $\quad \begin{aligned} & 3 x-y=10 \\ & 2 x+y=5\end{aligned}$
3) $\quad \begin{aligned} & -3 x+y=9 \\ & 3 x+4 y=6\end{aligned}$
4) $\begin{aligned} & 4 x-y=11 \\ & x+y=-1\end{aligned}$
5) $\begin{aligned} & -x-2 y=6 \\ & x-5 y=1\end{aligned}$
6) $\begin{aligned} & 2 x+3 y=6 \\ & x-3 y=-17\end{aligned}$

Solve simultaneously

1) $\begin{aligned} & 2 x+y=4 \\ & 3 x-y=1\end{aligned}$
2) $x+3 y=7$
$x-2 y=-8$
3) $x+4 y=15$
$3 x-4 y=-19$
4) $\begin{aligned} & 3 x+5 y=9 \\ & 3 x+y=-3\end{aligned}$
5) $\begin{aligned} & 2 x-3 y=4 \\ & x+3 y=11\end{aligned}$
6)

$$
\begin{aligned}
-2 x+y & =-7 \\
x-y & =4
\end{aligned}
$$

Stewards Academy

Question 2: Solve the following simultaneous equations by using elimination.
(a) $3 x+2 y=23$
(b) $\begin{aligned} & 3 x-3 y=9 \\ & 2 x+y=12\end{aligned}$
(c) $\quad \begin{aligned} & 4 x+2 y=34 \\ & 3 x+y=21\end{aligned}$
$2 x-y=6$
(e) $\quad 2 x+8 y=43$
(f) $\quad \begin{array}{r}6 x+3 y=45 \\ 2 x-2 y=12\end{array}$
(d) $9 x-4 y=59$
$2 \mathrm{x}-\mathrm{y}=12$
(h) $10 \mathrm{x}-15 \mathrm{y}=25$
$x-2 y=1$
(i) $\quad \begin{array}{r}3 x+8 y=97 \\ 2 x+4 y=58\end{array}$
(g) $\quad \begin{aligned} & 5 x+4 y=130 \\ & x+6 y=130\end{aligned}$
(l) $\quad \begin{aligned} & 5 x-3 y=33 \\ & 3 x-9 y=63\end{aligned}$
$5 x+4 y=52$
(k) $4 x+9 y=10$
$2 x+3 y=2$
(o) $15 x-4 y=82$
$5 x-9 y=12$
(m) $2 \mathrm{x}+4 \mathrm{y}=-2$
$4 x+2 y=-10$
(n) $8 x+4 y=-28$
$3 x-12 y=30$
(r) $\quad \begin{aligned} & 8 x-y=4 \\ & 3 x+8 y=-166\end{aligned}$
(p) $\quad \begin{aligned} 12 x+3 y & =9 \\ 2 x+11 y & =-9\end{aligned}$
(q) $\begin{aligned} & 9 x-7 y=111 \\ & x-2 y=16\end{aligned}$

Question 3: Solve the following simultaneous equations by using elimination.
(a) $\quad \begin{aligned} 2 x+2 y & =14 \\ 5 x-3 y & =19\end{aligned}$
(b) $2 x+3 y=1$
$7 x+2 y=-22$
(c) $5 x+3 y=22$
$2 x+4 y=20$
(d) $\quad 5 x-6 y=28$
(e) $3 x+2 y=7$
$4 x-4 y=24$
$2 x+9 y=43$
(f) $\quad 3 x+3 y=-6$
(g) $\quad 3 x+8 y=31$
(h) $\begin{aligned} & 7 x-15 y=2.5 \\ & 3 x-2 y=5.5\end{aligned}$
(i) $3 x+2 y=53$
$5 x+3 y=31$
(k) $2 x+9 y=11$
$9 x+3 y=-63$
(1) $2 x-4 y=4$
$5 x-3 y=24$
(m) $3 x+3 y=42$
$2 x+4 y=38$
(n) $\quad \begin{array}{r}6 x+2 y=-2 \\ 4 x-3 y=29\end{array}$
(o) $\quad 4 x-4 y=8$
$5 x-3 y=18$
(p) $4 x+3 y=9$
$5 x+2 y=13$
(q) $4 x-2 y=18$
$2 x-3 y=15$
(r) $\quad 5 x+2 y=38$
$2 x-3 y=19$

Question 4: Solve the following simultaneous equations by rearranging and then using elimination.
(a) $\quad \mathrm{x}=10-\mathrm{y}$
(b) $x-4=y$
$2 x+y=17$
$x+3 y=12$
(c) $\quad \begin{aligned} & 2 x+6 y=4 \\ & x=12+2 y\end{aligned}$
$\mathrm{x}=12+2 \mathrm{y}$
(d) $\begin{aligned} 3 x & =10+5 y \\ 3 y & =52-4 x\end{aligned}$
(e) $\quad \begin{aligned} & 2 x+y-18=0 \\ & 3 y=7 x+80\end{aligned}$
(f) $6 x+2 y+6=0$
$7 x-5 y-93=10$

Write an equation for each calculation.
How can you manipulate them to solve the Simultaneous Equations?
\square $=7$ $x+y=7$
a)

$$
+\square+\square=12
$$

b)

$$
\Delta+\triangle=7
$$

$$
\triangle+\triangle+\triangle+\triangle=15
$$

$$
\begin{aligned}
& \bigcirc+\bigcirc+\square+\square=16 \\
& \bigcirc+\bigcirc+\square+\square+\square=18
\end{aligned}
$$

d)

$$
\Delta+\Delta=10
$$

$$
\triangle+\Delta+\triangle+\Delta+\Delta=23
$$

e)

$$
\Delta+\Delta+\triangle=13
$$

$$
\triangle+\Delta+\triangle+\triangle+\triangle+\triangle+\triangle=30
$$

f)

$$
\begin{aligned}
& \square+\square+\square=12 \\
& \square+\square+\square=18
\end{aligned}
$$

Challenges:

Q1 Four chairs and two tables cost $£ 218$.
Six chairs and seven tables cost $£ 587$.
Find the total cost of buying twenty chairs and five tables.
Q2 A plumber charges a price for each hour, $£$ h, and a fixed charge, $£ c$.
A 5 hour job costs $£ 155$ in total.
A 8 hour job costs $£ 230$ in total.
How much would a job that lasts 2 hours cost?
Q3 Barry buys 200 pieces of stationery for $£ 76$.
Of the 200 pieces of stationery, x of them are rulers that cost 50 p each and y of them are pens that cost 20 p each.
Find how many rulers Barry buys and how many pens he buys.
Q4 In a greengrocers, 4 kg of bananas and 3 kg of apples costs $£ 7.50$
In the same greengrocers, 3 kg of bananas and 5 kg of apples costs $£ 8.10$
How much would 2 kg of bananas and 2 kg of apples cost?

Exam Practice:

https://www.mathsgenie.co.uk/resources/5-simultaneous-equations.pdf

Solve the simultaneous equations.
$2 x+y=18$
$x-y=6$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad
(Total 3 marks)

At a café,
2 teas and 1 coffee cost $£ 3.40$
1 tea and 4 coffees cost $£ 7.30$
Work out the cost of 1 tea and the cost of 1 coffee.
\qquad
Tea \qquad
Coffee \qquad
(Total 4 marks)
The sum of two numbers is 15 .
The difference of the same two numbers is 8 .
Use algebra to work out the numbers.
Do not use trial and improvement.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad and \qquad
(Total 4 marks)

SStewards Academy

Week 2:

- LI: I can solve simultaneous equations using the substitution method
- LI: I can solve simultaneous equations using a graphical method

Demonstration Videos:

https://corbettmaths.com/2013/05/07/solving-simultaneous-equations-by-substitution/ https://corbettmaths.com/2019/03/27/solving-simultaneous-equations-graphically/

Tasks:
Left \& Right

A	$\begin{gathered} 2 x+y=7 \\ y=x+1 \end{gathered}$	$\begin{aligned} & x=2 \\ & y=2 \end{aligned}$	
B	$\begin{aligned} & 6 x-y=1 \\ & 3 x+2=y \end{aligned}$	$\begin{aligned} & x= \\ & y=6 \end{aligned}$	
C	$\begin{gathered} y-3 x=-4 \\ y=8-3 x \end{gathered}$	$\begin{aligned} & x=3 \\ & y= \end{aligned}$	
D	$\begin{gathered} 3 x+2 y=14 \\ x+2=y \end{gathered}$	$\begin{aligned} & x=2 \\ & y=3 \end{aligned}$	
E	$\begin{gathered} 3 y+4 x=22 \\ y=2 x+4 \end{gathered}$	$\begin{aligned} & x=4 \\ & y=3 \end{aligned}$	
F	$\begin{gathered} 5 x+4 y=28 \\ 3 x=y+10 \end{gathered}$	$\begin{aligned} & x= \\ & y=5 \end{aligned}$	
G	$\begin{gathered} 2 x-3 y=-6 \\ y=4 x-8 \end{gathered}$	$\begin{aligned} & x=4 \\ & y=2 \end{aligned}$	
H	$\begin{gathered} 5 x-2 y=14 \\ y+2 x=11 \end{gathered}$	$\begin{aligned} & x=2 \\ & y=4 \end{aligned}$	

S Stewards Academy

Question 1: Shown below are the graphs of $y=-x+4$ and $y=x-2$
(a) Write down the coordinates of the point where the graphs of $y=-x+4$ and $y=x-2$ intersect.
(b) Use your answer to (a) to solve the simultaneous equations.

$$
\begin{aligned}
& y=-x+4 \\
& y=x-2
\end{aligned}
$$

Question 2: Shown below are the graphs of $y=2 x+2$ and $y=-x-4$
(a) Write down the coordinates of the point where the graphs of $y=2 x+2$ and $y=-x-4$ intersect.
(b) Use your answer to (a) to solve the simultaneous equations.

$$
\begin{aligned}
& y=-x-4 \\
& y=x-2
\end{aligned}
$$

Question 3: Shown below are the graphs of $y=x$ and $x-2 y+4=0$
(a) Write down the coordinates of the point where the graphs of $y=x$ and $x-2 y+4=0$ intersect.
(b) Use your answer to (a) to solve the simultaneous equations.

$$
\begin{aligned}
& y=x \\
& x-2 y+4=0
\end{aligned}
$$

Question 4: Shown below are the graphs of $6 x+2 y-9=0$ and $y=2 x-3$

Use the graphs to solve the simultaneous equations

$$
\begin{aligned}
& 6 x+2 y-9=0 \\
& y=2 x-3
\end{aligned}
$$

SStewards Academy

(b)

Stewards Academy

Challenges:

The numbers at the end of each row and column are the sum of that row or column. Work out the value of each shape in the grid.

	\cdots	\square	\square		30
D	D	K	\cdots	$\xrightarrow{*}$	34
	-		\square	D	34
					38
	\cdots	-	-	\wedge	30
36	34	36	28	32	

Exam Practice:

https://corbettmaths.com/wp-content/uploads/2013/02/simultaneous-equations-pdf.pdf
https://www.mathsgenie.co.uk/resources/5-solving-simultaneous-equations-graphically.pdf

Stewards Academy

Week 3:

- LI: I can calculate the probability of independent events
- LI: I can use sample space diagrams and two-way tables
- LI: I can calculate relative frequency and use it to predict outcomes

Demonstration Videos:

https://corbettmaths.com/2013/06/15/probability/
https://corbettmaths.com/2013/05/15/probability-of-not-happening/
https://corbettmaths.com/2013/06/18/sample-space-diagrams/
https://corbettmaths.com/2012/08/10/two-way-tables/
https://corbettmaths.com/2013/06/20/relative-frequency/

Tasks:

Question 1: Theo has 3 red sweets and 2 white sweets. He picks a sweet at random.
(a) Write down the probability that Theo picks a red sweet.
(b) Write down the probability that Theo picks a white sweet.

Question 2: Leah has 12 cards, each with a shape on it. She takes a card at random.
(a) What is the probability that Leah takes a card with a star on it?
(b) What is the probability that Leah takes a card with a triangle on it?

(c) What is the probability that Leah takes a card with a circle on it?

Question 3: Ralph has 9 cards, each with a number on it.

He picks a card at random.
Write down the probability that the chosen card is
(a) the number 8
(b) an even number
(c) a number less than 7
(d) a multiple of 4
(e) a square number
(f) a prime number

Stewards Academy

Question 4: There are 12 red roses, 5 yellow roses and 3 white roses in a vase. Felix takes a rose, at random, from the vase.
(a) Write down the probability that he takes a white rose.
(b) Write down the probability that he takes a red or a white rose.
(c) Write down the probability that Felix takes a rose that is not red.

Question 5: Leon throws a biased coin.
The probability of getting tails is 0.4
Work out the probability of getting heads.

Question 6: Edith plants a daffodil bulb.
The probability that the bulb will grow is 0.8
What is the probability that the bulb will not grow?
Question 7: Wycombe Wanderers play a match of football.
The probability that they win the match is 0.28
The probability that they draw the match is 0.55
Work out the probability that they lose the match.
Question 8: Evelyn has 80 pens in a drawer.
15 pens are black and the other pens are blue.
Evelyn picks a pen at random from the drawer.
(a) What is the probability that Evelyn picks a black pen?
(b) What is the probability that Evelyn picks a blue pen?

Question 9: There are 20 counters in a bag.
2 of the counters are white.
1 of the counters is pink.
4 of the counters are black.
The rest of the counters are purple.
Carter takes a counter at random from the bag.
Show that the probability that the counter is white or purple is $\frac{3}{4}$

SStewards Academy

TRUE or FALSE?

Stewards Academy

Question 1: An ordinary coin is thrown 50 times.
Barry says "I am going to get heads 25 times and tails 25 times."
Explain why he could be wrong.
Question 2: A coin is thrown 30 times.
The coin lands on tails 20 times.
What is the relative frequency of the coin landing on tails?
Question 3: A dice is rolled 50 times.
It lands on six 37 times.
(a) Write down the relative frequency of the dice landing on a six.

Robyn says "the dice is biased towards landing on a six."
(b) Do you think the dice is biased? Explain your answer.

Question 4: Jessica wants to test if a coin is biased.
She throws the coin 24 times.

$$
\begin{aligned}
& \mathrm{T} T H H T \\
& \mathrm{~T} H
\end{aligned} \mathrm{H} T \mathrm{~T} \text { T } \mathrm{H} H \mathrm{H} \text { T H } \mathrm{H} \text { H } \mathrm{H} \text { T }
$$

(a) Complete the relative frequency table.

	Heads	Tails
Relative frequency		

(b) Do you think the coin is biased? Explain your answer.

Question 5: A biased dice is rolled is rolled 30 times.

341362661653646
(a) Complete the relative frequency table

Number	1	2	3	4	5	6
Relative Frequency						

(b) Do you think the dice is biased? Explain your answer.

Question 6: Esme takes the bus to university 40 times during a term.
The relative frequency of the bus being late is 0.3 .
How many times was the bus late?

His Stewards Academy

Question 7: Katie rolls a dice 100 times.
The table shows the results

Number	1	2	3	4	5	6
Frequency	22	9	14	31	19	5

Work out the relative frequency of throwing:
(a) An even number
(b) A square number
(c) A prime number
(d) A cube number
(e) A multiple of 3
(f) A factor of 18

Question 8: A spinner lands of white, black, red or orange.
The relative frequencies after 300 spins are shown in the table below.

Colour	White	Black	Red	Orange
Relative Frequency	0.25	0.4	0.2	0.15

(a) How many times did the spinner land on white?
(b) How many times did the spinner land on red?
(c) How many more times did the spinner land on black than orange?

Question 7: Martin and Laura want to estimate how many green jelly beans are in a tub of 600 jelly beans.
A trial consists of taking a jelly bean at random, noting the colour and replacing the jelly bean into the tub.

	Number of trials	Number of green jelly beans chosen
Martin	30	4
Laura	150	12

(a) Write down the relative frequency of Martin taking a green jelly bean.
(b) Write down the relative frequency of Laura taking a green jelly bean.
(c) Whose experiment gives the more reliable estimate of the number of green jelly beans in the tub? Give a reason for your answer.
(d) How many green jelly beans do you expect to be in tub altogether?

Exam Practice:

https://www.mathsgenie.co.uk/resources/2-writing-probability-and-the-probability-scale.pdf
https://www.mathsgenie.co.uk/resources/3-two-way-tables.pdf
https://www.mathsgenie.co.uk/resources/4-probability-and-relative-frequency.pdf

Week 4:

- LI: I can use the product rule for counting
- LI: I can use a Tree diagram to calculate probabilities of dependent and independent events

Demonstration Videos:

https://corbettmaths.com/2016/09/18/17416/
https://corbettmaths.com/2013/05/07/tree-diagrams/

Tasks:

TRUE or FALSE?

A 6 marbles can be arranged in 720 ways.	\|B The 10 outfield players (not goalkeeper) on a football team can be arranged into 36288 different formations.
C A 4-digit (zero to nine) phone PIN has 1,000 combinations.	20 people meet. If they all bow to each other once, there are a total of 190 bows.
E "My 4-digit phone PIN is either an odd number below 3000... or it is any number equal or greater than 3000. ." The possibility of guessing this PIN in one try is $1 / 4000$.	F The digits to unlock a 5 -wheel combination lock are all different and all greater than 2. The combination lock has 2520 possible codes.
At a restaurant there are 3 starters, 6 main courses \& 5 types of dessert. If you pick one of each, there are 90 combinations of meals available.	A sandwich shop offers 8 types of filling for a sandwich. If you pick 3 fillings there are 336 different types of sandwich you could order.
A robot factory gives a unique code to each robot. It is either letter-letter-digit OR letter-letter-letter-digit. The factory can produce 182,520 robots before it needs to introduce a new code.	J 15 students audition for the school play. There are 5 different roles available in the play. The roles could be filled in 360,360 different ways.
K There are 12 different toppings available at a pizza restaurant. If you pick 4 for your pizza, there are 990 different combinations of pizza available.	A headteacher wants to choose 2 students from Year 10 to represent the school. There are 120 students in Year 10, so there are 14,280 possible pairs of students to choose from.

1 Hayley makes a sandwich using
bread (B) or a roll (R) and ham (H) or cheese (C) and salad (S) or pickle (P)

1 (a) List all the possible types of sandwich Hayley could make.
One has been done for you.

[2 marks]

```
BHS
```

1 (a) What fraction of the possible types of sandwich have cheese and pickle?

[1 marks]

\$Stewards Academy

*Stewards Academy

The probability Jim passes his maths test is $\frac{7}{10}$. The probability he passes English is $\frac{4}{5}$.
3.

HS Stewards Academy

TRUE or FALSE?
Complete the tree diagrams. Sort the cards into two piles: TRUE \& FALSE
(Total of 12) $=\frac{2}{36}$

Challenges:

A biased coin has a probability of 0.9 showing up heads when flipped.
You flip this coin six times.
Write your answers to the following questions as decimals.
a) What is the probability that the coin showed up tails on the second flip?
b) What is the probability that the coin showed up tails on the sixth flip?
c) What is the probability that the coin only showed up tails on the sixth flip?
d) What is the probability that the coin only showed up tails once out of the six times it was flipped?

Exam Practice:

https://www.mathsgenie.co.uk/resources/6-product-rule.pdf
https://www.mathsgenie.co.uk/resources/5-probability-trees.pdf

Stewards Academy

Week 5:

- LI: I can use set notation
- LI: I can calculate probabilities from a Venn diagram

Demonstration Videos:

https://corbettmaths.com/2019/03/27/set-notation/
https://corbettmaths.com/2016/08/07/venn-diagrams/

Tasks:

Highest Common Factors \& Set Notation
$\mathbf{A} \cap \mathbf{B}$ Intersection: The overlap of \mathbf{A} and \mathbf{B}.

1) $\mathbf{C} \cap \mathbf{D}=\{\quad\}$ HCF of 16 \& $24=$
2) $\mathbf{D} \cap \mathbf{E}=\{1,2,3,4,6,12\}$ HCF of 24 \&
$\mathbf{F}=\{$ Factors of 30$\}=$
$\mathbf{G}=\{$ Factors of 40$\}=$
H $=\{$ Factors of 45$\}=$
$\mathbf{I}=\{$ Factors of 54$\}=$
$\mathbf{J}=\{$ Factors of 72$\}=$
3) $\mathbf{F} \cap \mathbf{G}=$
4) $\mathrm{H} \cap \mathrm{I}=$
HCF of
5) $\mathbf{G} \cap \mathbf{J}=$
6) $1 \cap \mathrm{~J}=$
HCF of
HCF of
7) $\mathbf{A} \cap \mathbf{D} \cap \mathbf{H}=$
8) $B \cap E \cap J=$ HCF of HCF of

HS Stewards Academy

TRUE or FALSE? Groups of students were surveyed about their daily life. Cut out all 16 cards. Sort them into two piles: TRUE \& FALSE

100 members of a club were asked if they have a brother or a sister.
50 people have a sister
59 people have only a brother

33 people have both a brother and sister.

Represent this information in a Venn diagram.

40 students are asked if they study geography or history.

27 students study history.

24 students student geography.

3 students study neither.

Complete the Venn Diagram.

What is the probability of selecting a student who studies both history and geography?
Geography
(2)

- 5 study Geography and not English.
- 25 study English and not Geography.
- 20 study English and Geography.
If I pick a student at random, what

P(study English) =

$P($ study Geography $)=$

P(study Geography AND English) =
45 people bought己
0
0
3
0
0
4
$\frac{1}{0}$
0
0
0
0 20 bought strawberry. 30 bought chocolate.
(ㄷ)

"Stewards Academy

Complement: ‘

The opposite of a set.
$\mathbf{B}^{\prime}=$ everywhere not in \mathbf{B}

Intersection: \cap
The overlap of regions.
$\mathbf{A} \cap \mathbf{B}=$ everywhere A and B overlap

Union: U
The sum of regions.
$\mathbf{A} \cup \mathbf{B}=\mathbf{A}$ added to \mathbf{B}

A

A U B

B

$A \cup B^{\prime}$

$A \cap B^{\prime}$

A^{\prime}

$A^{\prime} \cup B$

B'

$A^{\prime} \cup B^{\prime}$

$A^{\prime} \cap B^{\prime}$

1 (a) Which of these represents the shaded region? Circle your answer.

$B \cap A^{\prime}$

A^{\prime}
$B^{\prime} \cup A^{\prime}$
$B \cup A^{\prime}$
[1 mark]

1 (b) Which of these represents the shaded region? Circle your answer.

$(A \cup B)^{\prime}$
$A^{\prime} \cap B^{\prime}$
$(A \cap B)^{\prime}$
$A \cap B$
"Stewards Academy

Stewards Academy

Challenges:

The Venn diagram shows information about the cars in a car park.
$\xi=150$ cars in the car park
$\mathrm{R}=$ red cars
$J=$ cars manufactured in Japan

A car is chosen at random.
Work out the probability that it is red.

The Venn diagram shows information about the pets owned by 40 students
$\xi=40$ students
C = students who own a cat
$\mathrm{D}=$ students who own a dog

A student is chosen at random.
They own a cat.
Work out the probability that they own a dog.

Exam Practice:

https://www.mathsgenie.co.uk/resources/5-venn-diagrams.pdf

Stewards Academy

Week 6:

- LI: I can use cumulative frequency graphs, box and whisker plots, and histograms
- LI: I can make predictions using data, and comment on the accuracy of those predictions
- LI: I understand sampling and sampling methods

Demonstration Videos:

http://corbettmaths.com/2013/05/15/drawing-and-reading-box-plots/
http://corbettmaths.com/2012/08/09/drawing-cumulative-frequency-graphs/

http://corbettmaths.com/2012/08/09/reading-cumulative-frequency-graphs/

http://corbettmaths.com/2012/08/20/drawing-histograms/
http://corbettmaths.com/2012/08/19/finding-frequencies-from-histograms/

Tasks:

Draw the missing box plot from above.

S Stewards Academy

SStewards Academy

SStewards Academy

Histograms: Reading
2) The histogram shows the distance workers commute.
3) The histogram shows temperatures on different winter days.

Use the histogram to estimate..
a) ...the median.
b) ...the lower quartile.
c) ...the upper quartile.
d) What is the inter-quartile range?
4) The histogram shows the weight of different packages.

a) Estimate the median.
b) Estimate the inter-quartile range.

a) How many people commute ...less than 10 km ?
b) ...more than 20 km ?
c) ...between 10 km and 15 km ?
d) ...less than 2 km ?
e) ...more than 22 km ?
b) ...more than 20 km ?
f) ...more than 7 km ?

Mathematics Department

Stewards Academy ASSESSMENT FEEDBACK

Questions	Question Title
1	Multiplication with surds
2	Negative vectors
3	Order of aperations, simplobioteripresions
4	Estimating calculations
5	Solving linear inequalities
6	Express one number as a fraction of another
7	Using gradient to find paints
8 B	Calculating relative frequency
枵	Relative frequency and testing for bias
9	Rainge from ${ }^{\text {a set of diata, sdd and subtract fractions }}$
10	Agebraic inverse proportion
11	Perimeter problem solving with algebra
12	Comparine numbers in standard form
13	Converting wolume units
14a	Sequences from pictures, eomparing with ratio
14 b	Ratio problem solving
15	Expectation
16	Percentage increase, compare quantities using ratio
17	Sine rule
12	Surface area of a complex shape
19a/b	Cumulative frequency diagram calculations
19 C	Interpreting bues plots
20	Sequences with algebra, simultaneous equations
21	Enlarge a shape bya negative scale factor
22	Shading sets in Venn diagrams
23	Fraction problemsolving
24 a	Order of aperationt, lave of indices
24b	Lave of indices (fractional powers)
25.	Cosine graphs
25 b	Cosine graphs, graph transformations
26	Change subject of a formula, fractions, ratio
27 a	Solving quadratic equations by factorising
27b	Solving quabratic equations by completing the square
28	Dividing with surds, simplifying surds
29 a	Graph transformations - translation
29 b	Graph transformations - reflection in the x-axis
30	Usingex exact values of tine, cosine and tangent

