Stewards Academy

Maths Spring 2

Year 10 Foundation

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 10 Overview
Page 4: Knowledge Organiser
Page 5-11: Week 1 - Perimeter and Area
Page 12-16: Week 2 - Composite Area and Surface Area
Page 17-24: Week 3 - Linear Graphs
Page 25-32: Week 4 - Circumference of a Circle
Page 33-38: Week 5 - Area of a Circle
Page 39-45: Week 6-Surface area
Page 46: Assessment Ladder

Stewards Academy

Stewards Academy

Week 1:

- LI: I can calculate the perimeter of composite shapes
- LI: I can calculate the area of a triangle, parallelogram and trapezium

Demonstration Videos:

https://www.mathsgenie.co.uk/area-perimeter.html
https://corbettmaths.com/2013/12/20/area-of-a-triangle-video-49/ https://corbettmaths.com/2013/12/21/area-of-a-parallelogram-video-44/ https://corbettmaths.com/2012/08/02/area-of-a-trapezium-video/

Tasks: Perimeter

Question 7: Find the perimeter of each of these shapes
(a)

(d)

(b)

(c)

(e)
11 cm

Challenges and Exam Practice:

Question 2: A rectangle has a perimeter of 18 cm .
Write down a possible pair of values for its length and width

Question 3: The triangle and square have the same perimeter. Find x

\times

Question 5: The length of a rectangular field is 60 m greater than the width of the field. The field has a length of 310 m . Find the perimeter of the field.

Question 6: Felicity wants to place a wooden fence around her vegetable garden.
Each metre of fencing costs $£ 5.80$
Work out the cost of the new fence

11. The perimeter of the rectangle and the square are the same.

Find the width of the rectangle, x .

> Triangle
> Area $=1 / 2 \times \mathrm{b} \times \mathrm{h}$
> $\mathrm{b}=$ base
> $\mathrm{h}=$ vertical height

Parallelogram
Area $=\mathrm{b} \times \mathrm{h}$
b = base
$h=$ vertical height

$\frac{\text { Trapezoid (US) }}{\text { Trapezium (UK) }}$
Area $=1 / 2(\mathrm{a}+\mathrm{b}) \times \mathrm{h}$
$\mathrm{h}=$ vertical height

Task 1

Question 1: Find the area of each triangle.
(a)

(b)

(c)

Question 2: Find the area of each triangle.
(a)

(b)

(c)

Question 3: Find the area of each triangle.
(a)

(b)

(c)

7: The area of the triangle is $20 \mathrm{~cm}^{2}$, find x .
9: The area of the triangle is $12 \mathrm{~cm}^{2}$, find z .

8: The area of the triangle is $30 \mathrm{~cm}^{2}$, find y.

10: The area of the triangle is $56 \mathrm{~cm}^{2}$, find a.

Challenge:

Question 4: Shown below is a triangular field.
Each chicken requires $3 \mathrm{~m}^{2}$.
How many chickens can be kept in this field?
$14 m$

18 m

Exam Question

6. Below is a right-angled triangle and a rectangle.

The area of the right-angled triangle is equal to the area of the rectangle.

Calculate x

Task 2
Question 2: Work out the area of each of the parallelograms below. Include suitable units.
(a)

(d)

(g)

(b)

(e)

(c)

(f)

(h)

(i)

Question 4: The areas of each of the parallelograms has been given. Calculate the length of the missing sides.
(a)

(b)

(c)

Challenge

Question 1: The logo below is created by joining two congruent parallelograms. Calculate the area of the logo.

Question 2: Find x

15 cm

Task $3 \quad$ Question 1: Find the area of each trapezium.
(a)
(b)

(c)

Question 2: Find the area of each trapezium.
(a)

(b)

(c)

(d)

(e)

(f)

Question 4: Find x for each trapezium.
(a)

(b)
Area $=55 \mathrm{~cm}^{2}$

(c)

Challenge

Question 2: Mr Taylor keeps chickens in the field shown.
Each chicken needs $3 \mathrm{~m}^{2}$.
What is the maximum number of chickens he can keep in the field?

Question 3: The trapezium and the triangle have the same area.
Calculate the height of the triangle.

This diagram shows a parallelogram.

Calculate the area of this parallelogram.
7. The diagram shows a parallelogram that has perimeter 30 cm .

Calculate the area of the parallelogram.
6. A club logo is made from a square and a trapezium.

5.

The area of the trapezium is $34 \mathrm{~cm}^{2}$.

Work out the value of x.
Calculate the area of the logo

Stewards Academy

Week 2:

- LI: I can calculate the area of a composite shape
- LI: I can calculate the surface area of a pyramid

Demonstration Videos:

https://corbettmaths.com/2012/08/02/area-of-compound-shapes/
https://www.mathsgenie.co.uk/surfacearea.h
https://www.youtube.com/watch?v=vCf2yK4tzkk

Tasks: - Area of Composite Shapes

Task 1: Match the area of the shapes to the answers below

Question 2: Work out the shaded area.
(a)

(b)

(c)

15 cm

Question 3: Work out the area of each of these shapes.
(a)

(b)

(c)
3 cm

(d)

(e)

(f)

Question 4: Work out the shaded area.
(a)

(b)

(c)
200 m

Question 5: Work out the area of each of these shapes.
Challenges:
(a)

(b)

(c)

Diagram NOT
accurately drawn

The diagram shows 3 small rectangles inside a large rectangle.
The large rectangle is 10 cm by 8 cm .
Each of the 3 small rectangles is 4 cm by 2 cm .
Work out the area of the region shown shaded in the diagram.

Exam Practice:

Shown is an L shape.

Calculate the area of the shape.
4.

The area of the compound shape is $106 \mathrm{~cm}^{2}$.
Work out the size of x .
10. Bea makes a logo for a club in school.

Work out the area of the logo.

Example:

Surface area $=$ base area $+\frac{1}{2} \times$ perimeter \times slant height
Base area $=$ side \times side $=6 \times 6=36 \mathrm{~m}^{2}$
Perimeter $=4 \times$ side $=4 \times 6=24 \mathrm{~m}$
Surface area $=36+\frac{1}{2} \times 24 \times 10$
$=156 \mathrm{~m}^{2}$

Find the surface area of each square pyramid.
1)

2)

3)

Surface Area = \qquad Surface Area = \qquad Surface Area = \qquad
4)

Surface Area =
5)

Surface Area =
6)

Surface Area =

Find the surface area of each regular triangular pyramid.
1)

2)

3)

Surface Area = \qquad
Surface Area = \qquad

Surface Area = \qquad

Exam Question

> Fabric is used to make the four triangular faces of a pyramid.

Each triangular face has base 15 cm and perpendicular height 24 cm

Cost of fabric
$£ 400$ per square metre

Calculate the cost of the lampshade

Stewards Academy

Week 3:

- LI: I can use $y=m x+c$ to identify the gradient and y-intercept of a line
- LI: I can find the equation of a line using one coordinate point and a known gradient
- LI: I can find the equation of a line using two given coordinate points

Demonstration Videos:

https://corbettmaths.com/2013/05/29/ymxc/
https://corbettmaths.com/2013/05/29/finding-the-equation-of-a-straight-line/
https://corbettmaths.com/2013/05/29/finding-the-equation-passing-through-two-points/

Key Information:

Memory

Equation of a straight line

$$
y=m x+c
$$

M is the gradient
(Remember you need two pairs of coordinates)
Gradient $=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-y_{1}}$
C is the y -intercept
This is the value at which the line crosses the Y-axis

Tasks: Identifying the gradient and y intercept

Question 1: Write down the gradient of each of these lines.
(a) $y=3 x+1$
(b) $y=2 x-5$
(c) $y=7 x+4$
(d) $y=10 x+5$
(e) $y=x-2$
(f) $y=6 x$
(g) $y=-4 x+3$
(h) $y=-3 x-7$

Question 2: Write down where each of these lines cross the y-axis (y-intercept)
(a) $y=2 x+3$
(b) $y=7 x+1$
(c) $y=3 x-2$
(d) $y=x-5$
(e) $y=2 x$
(f) $y=-4 x+6$
(g) $y=-5 x-3$
(h) $y=-3 x$

Question 3: Write down the equation of the lines below
(a) gradient of 3 and y-intercept of 6
(b) gradient of 2 and y-intercept of -1
(c) gradient of -4 and y-intercept of 3
(d) gradient of 8 and y-intercept of 4
(e) gradient of 1 and passing though $(0,4)$
(f) passing through $(0,-2)$ with gradient 4
(g) gradient of -5 and passing through the origin.

\$ Stewards Academy

Stewards Academy

Challenge:

Decide if each card is TRUE or FALSE!

A	B		D
The equation of a line in the form $y=m x+c$ tells us the gradient (m) and the y-intercept (c).	$\begin{gathered} y=4 x+7 \\ \text { Gradient }=4 \\ y \text {-intercept }=6 \end{gathered}$	$\begin{gathered} y=\frac{1}{2} x-3 \\ \text { Gradient }=0.5 \\ y \text {-intercept }=-3 \end{gathered}$	$\begin{gathered} -y=2 x+6 \\ \text { Gradient }=2 \\ y \text {-intercept }=6 \end{gathered}$
$\begin{gathered} 2 y=6 x+2 \\ \text { Gradient }=3 \\ y \text {-intercept }=1 \end{gathered}$	$\begin{gathered} y=8-3 x \\ \text { Gradient }=3 \\ y \text {-intercept }=8 \end{gathered}$	$\begin{gathered} 3 y=2 x-9 \\ \text { Gradient }=0.6 \\ y \text {-intercept }=-3 \end{gathered}$	H Every straight line has a positive or a negative gradient.
$\begin{array}{r} 1 \\ y-2 x=5 \\ \text { Gradient }=-2 \\ y \text {-intercept }=5 \end{array}$	$\begin{gathered} 4 y=3 x \\ \text { Gradient }=0.75 \\ y \text {-intercept }=0 \end{gathered}$	$\begin{array}{\|l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { Gradient }=-1 \\ \text {-intercept }=4 \end{array}$	$\begin{gathered} 2 y=x-14 \\ \text { Gradient }=\frac{1}{2} \\ y \text {-intercept }=-7 \end{gathered}$
M $\begin{aligned} 2 y+5 & =x \\ \text { Gradient } & =0.5 \\ y \text {-intercept } & =-2.5 \end{aligned}$	$\begin{gathered} 5-y=7 x \\ \text { Gradient }=7 \\ y \text {-intercept }=-5 \end{gathered}$	$\begin{gathered} 4 x-2 y=7 \\ \text { Gradient }=2 \\ y \text {-intercept }=-3.5 \end{gathered}$	$\begin{gathered} 9-5 x=-2 y \\ \text { Gradient }=2.5 \\ y \text {-intercept }=-4.5 \end{gathered}$

Question 12: Find the gradients and the y-intercepts of each of these lines
(a) $x+y=10$
(b) $x-y=4$
(c) $2 \mathrm{x}+\mathrm{y}=6$
(d) $3 x-y=-1$
(e) $8 \mathrm{x}+2 \mathrm{y}+9=0$
(f) $5 x-2 y-4=0$
(g) $7 x=1-2 y$
(h) $15 y-6 x=8$
(i) $2 / 3 x+2 y=5$
(j) $1 / 5 y-1 / 2 x=1$
(k) $2 / 3 x+3 / 4 y=11 / 2$

Name

8	-3	0.2	-6	0.5
3	-6	1	-5	3
7	6	4	-1	2
-1	-4	2	-0.5	0.5
2	-3	5	-2	1

$2 y=x+2$	$2 y=4 x+2$	$y=10-3 x$	$y-8 x=20$
$2 y+x=10$	$6 x+y=12$	$2 y-x=4$	$2 y-6 x=3$
$x=y+4$	$2 y=10-10 x$	$3 y=18 x-12$	$4 y+16 x=12$
$5 y-x=10$	$2 y+4 x=8$	$y-2 x=8$	$3 y=20-18 x$
$3 y=15 x+12$	$x+y=4$	$3 y-12 x=15$	$2 y-14 x=14$

A straight line has equation $y=3 x-2$
(a) Write down the gradient of the line.
(b) Write down the coordinates of the point where the line crosses the y axis.

A straight line has equation $y=5-3 x$
(a) Write down the gradient of the line.
(b) Write down the coordinates of the point where the line crosses the y axis.

A straight line has equation $2 y-10 x=8$
(a) Work out the gradient of this line.
(b) Write down the equation of a line parallel to this line.

Find the equation of the line that passes through A and B.

Question 8: Find the equation of the straight line that:
(a) has a gradient of 4 and passes through the point $(1,10)$
(b) has a gradient of 2 and passes through the point $(-3,3)$
(c) has a gradient of 1 and passes through the point $(5,2)$
(d) has a gradient of -3 and passes through the point $(-2,8)$
(e) has a gradient of -5 and passes through the point $(3,-1)$
(f) has a gradient of $1 / 2$ and passes through the point $(4,5)$
(g) has a gradient of $2 / 5$ and passes through the point $(-5,-5)$
(h) has a gradient of $-2 / 3$ and passes through the point $(9,15)$

Challenge

Question 4:
(a) Does the point $(2,5)$ lie on the line $y=3 x-1$?
(b) Does the point $(4,1)$ lie on the line $y=3 x+1$?
(c) Does the point $(3,1)$ lie on the line $y=x-3$?
(d) Does the point $(5,7)$ lie on the line $y=-3 x+22$?
(e) Does the point $(-4,-8)$ lie on the line $y=-2 x$?
(f) Does the point $(-1,8)$ lie on the line $y=2 x+11$?
(g) Does the point $(12,60)$ lie on the line $y=7 x-18$?

	$\sum \sum$	$\dot{W} \stackrel{\rightharpoonup}{\psi}$
Find the gradient 1) $2 y=6 x-6$	Find the equation of the line parallel to the lines given through the stated point	Find the equation of the line parallel to the lines given through the stated point
2) $4 y-4 x=7$	1) $\begin{aligned} & y=2 x+3 \\ & (0,5) \end{aligned}$	1) $y=x+3$
3) $2 x+y=9$	2) $\begin{aligned} & y=5 x-4 \\ & (0,-2) \end{aligned}$	2) $\begin{aligned} & y=2 x-3 \\ & (-1,4) \end{aligned}$
4) $4 y-x=10$	3) $\begin{aligned} & y=5-6 x \\ & (0,3) \end{aligned}$	3) $y=5+3 x$ (1,-3)
5) $y-5 x=10$	4) $y+5=1 / 2 x$ $(0,4)$	4) $y-3=1 / 2 x$ $(-2,-4)$
6) $6 x-3 y=-2$ 7) $2 x+4 y=2$	5) $\begin{aligned} & y-3 x=1 \\ & (0,-1) \end{aligned}$	5) $\begin{aligned} & y-2 x=1 \\ & (4,-1) \end{aligned}$
8) $8 x-2 y=1$	6) $\begin{aligned} & y+5 x=2 \\ & (0,-5)\end{aligned}$	6) $\begin{aligned} & y+5 x=2 \\ & (1,-2) \end{aligned}$

Exam Practice:

3 A line passes through the point $(0,-5)$.
The gradient of this line is 3 .
Write down the equation of this line.
10. The equations of four lines are given below.

$$
\begin{array}{ll}
\text { Line } A & y=4 x+1 \\
\text { Line } B & y+2 x=8 \\
\text { Line C } & y=9-2 x \\
\text { Line D } & y-3 x=3
\end{array}
$$

Which lines go through the point $(2,9)$?

11 The line with equation $x+2 y=6$ has been drawn on the grid.

(a) Rearrange the equation $x+2 y=6$ to make y the subject.
(b) Write down the gradient of the line with equation $x+2 y=6$
(c) Write down the equation of the line which is parallel to the line with equation $x+2 y=6$ and passes through the point with coordinates $(0,7)$.
16. A line has a gradient of $-1 / 2$ and passes through the point $(-6,-8)$.

Find the equation of the line.

Stewards Academy

Tasks - Finding the equation of a line given two coordinate points
Finding the Equation of a Line from Coordinates

Point \mathbf{A} coordinates	Point \mathbf{B} coordinates	Change in x	Change in y	Gradient	Substitute \mathbf{A} coordinates into $\quad y=m x+c$	Solve to find c	Equation of the line $\mathbf{A B}$	
$(4,9)$	$(5,11)$	+1	+2	+2	$(9)=2(4)+c$	+1	$y=2 x+1$	
$(1,5)$	$(2,8)$							
$(4,5)$	$(7,11)$							
$(3,8)$	$(-1,-4)$							
$(-1,-6)$	$(3,10)$							
$(-2,-3)$	$(-4,-13)$							
$(4,-5)$	$(0,3)$							
$(-2,-3)$	$(6,-11)$							
$(4,-19)$	$(-2,-1)$							

Question 7: Find the equation of the straight line that passes through the points
(a) $(0,3)$ and $(4,19)$
(b) $(0,2)$ and $(6,20)$
(c) $(0,0)$ and $(1,4)$
(d) $(0,-9)$ and $(9,0)$
(e) $(0,-6)$ and $(7,8)$
(f) $(-8,-10)$ and $(0,14)$
(g) $(0,2)$ and $(10,7)$
(h) $(-4,1)$ and $(0,7)$
(i) $(-4,0)$ and $(0,18)$

Stewards Academy

Question 10: Find the equation of the straight line that passes through these pairs of points
(a) $(2,5)$ and $(4,11)$
(b) $(-4,2)$ and $(1,7)$
(c) $(-5,-8)$ and $(-4,-4)$
(d) $(-1,-2)$ and $(-6,3)$
(e) $(-6,-4)$ and $(-3,2)$
(f) $(3,5)$ and $(4,1)$
(g) $(-5,4)$ and $(5,2)$
(h) $(1,6)$ and $(5,4)$
(i) $(-10,-5)$ and $(-7,4)$

Challenge:

Question 2: Do the points $(1,4),(4,10)$ and $(9,20)$ lie in a straight line?
Question 3: A line has equation $\mathrm{y}=2 \mathrm{x}+6$
The line crosses the x-axis at the point A
The line crosses the y-axis at the point B
The point C has coordinates $(1,8)$
(a) Find the coordinates of the point A
(b) Find the coordinates of the point B
(c) Find the equation of the straight line passing through the points A and C .

Question 5: Line 1 has equation $\mathrm{y}=3 \mathrm{x}-12$
(a) Find the coordinates of P
(b) Find the equation of Line 2

Exam Practice:

13. The point $A(-3,5)$ and the point $B(1,-15)$ lie on the line L. Find the equation of the line L .
14. The point $A(1,1)$ and the point $B(5,-1)$ lie on the line L.

Find the equation of the line L.

Week 4:

- LI: I can identify parts of a circle
- LI: I can calculate the circumference of a circle
- LI: I can calculate the length of an arc
- LI: I can calculate the perimeter of a sector

Demonstration Videos:

https://corbettmaths.com/2013/12/21/parts-of-the-circle-video-61/
https://corbettmaths.com/2013/12/21/circumference-video-60/
https://corbettmaths.com/2013/03/26/arc-length/
https://corbettmaths.com/2012/08/02/perimeter-of-a-semi-circle/

Tasks: Identifying parts of a circle

Circle Vocabulary: Match each word with its definition.	
Arc	Line joining two points on a circumference.
Segment	Perimeter of a circle.
Chord	Part of a circle between a chord and an arc.
Radius	Line touching the circumference of a circle once.
Diameter	Distance from the centre of a circle to the edge.
Circumference	Part of the circumference of a circle.
Tangent	Part of a circle between two radii and an arc.
Sector	Width of a circle.

Question 1: Name the parts of the circle shown in each diagram
(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

A		C	D
Center	The diameter of a circle is twice the radius.	Diameter	
E The area enclosed by a diameter \& an arc is a semi-circle.	F A chord divides a circle into two sectors.	G Major sector	```H A sector has ```
I 2 radii	J The area enclosed by a chord \& an arc is called a segment.	K The circumference of a circle is over 3 times the diameter.	L Minor segment
\bar{M} An arc is part of the perimeter of a circle.		0 Tangent	P The radius of a circle is longer than any chord in the circle

Challenges:

Question 3: Draw a circle with
(a) A radius of 4 cm
(b) A radius of 6 cm
(c) A diameter of 6 cm
(d) A diameter of 10 cm
(e) A radius of 2.5 cm
(f) A diameter of 8.4 cm

Question 4: Shown is a circle, centre 0 . What is the name given to each of the following straight lines.

(a) 0 A
(b) AC
(c) CO
(d) CD
(e) CA
(f) $O D$
(g) AD
(h) BC

Exam Practice:
3. Points A, B, C and D are four points on the circle with centre O.

Here are six words that are used with circles.
Arc Diameter Chord Tangent Circumference Radius
Choose the correct word to describe each line below.
(a) The straight line AC is a \qquad of the circle.
(b) The straight line $O D$ is a \qquad of the circle.
(c) The straight line BC is a \qquad of the circle.
(d) Draw a sector of the circle below.

Tasks - Finding the Circumference of a Circle

Question 1: Calculate the circumference of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

Question 2: Calculate the circumference of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

Question 7: Find the size of the diameter for each of the following circles. Give your answer to 2 decimal places.
(a)

(b)
Circumference $=50 \mathrm{~cm}$

(c) Circumference $=3 \mathrm{~m}$

Question 8: Find the size of the radius for each of the following circles. Give your answer to 2 decimal places.
(a)

(b)
Circumference $=42 \mathrm{~m}$

(c)
Circumference $=2 \mathrm{~m}$

Challenge:

Question 3: A bicycle wheel has a diameter of 62 cm . The wheel makes 80 complete revolutions.
How far has the bicycle travelled?
Give your answer in metres.

Question 4: Which shape has the greatest perimeter?

Exam Practice
3 A circle has a radius of 6.5 cm .
Work out the circumference of the circle.
Give your answer correct to 2 decimal places.

4 A circle has a diameter of 9 m .
Work out the area of the circle.
Give your answer correct to 1 decimal place.
(Total for question $\mathbf{4}$ is $\mathbf{3}$ marks)

Tasks: Finding the length of an arc

Key Information:

Length of an $\operatorname{Arc}=\frac{\theta}{360} \times \pi d \quad$ (d is the circumference of the circle, θ is the angle)

Question 1: For each sector below, calculate the length of the arc.
Give your answers to one decimal place and include suitable units.
(a)

(b)

(c)

(d)

Question 2: For each sector below, calculate the length of the arc.
Give your answers to one decimal place and include suitable units.
(a)

(b)

(c)

(d)

Question 6: The arc length of each sector has been given.
Calculate x
Give your answers to one decimal place and include suitable units.
(a)

(b)
Arc Length $=85.2 \mathrm{~cm}$

(c)
Arc Length $=9 \mathrm{~cm}$

Question 7: The arc length of each sector has been given. Calculate x
(a)

$$
\text { Arc Length }=15 \pi \mathrm{~cm}
$$

(b)

Arc Length $=6 \pi \mathrm{~cm}$

(c) Arc Length $=10 \pi \mathrm{~cm}$

Tasks: Calculating the perimeter of a sector

Question 4: Calculate the perimeter of each sector below
Give your answers to one decimal place and include suitable units.
(a)

(b)

(c)

(d)

© CORBETTMATHS 2018

Question 9: The perimeter of each sector has been given. Calculate the size of the angle Give your answers to one decimal place.
(a)
Perimeter $=36 \mathrm{~cm}$
(b)
Perimeter $=26.63 \mathrm{~cm}$

15 cm
(c)
Perimeter $=22.81 \mathrm{~cm}$

Question 10: The perimeter of each sector has been given.
Calculate x
Give your answers to one decimal place.
(a)
Perimeter $=210 \mathrm{~cm}$

(b)
Perimeter $=40 \mathrm{~cm}$

Challenges

Question 1: Calculate the perimeter of the segment.

Question 2: James is calculating the perimeter of the sector. Can you spot any mistakes?

> Perimeter
> $\quad=\frac{30}{360} \times \pi \times 20$
> $=5.236 \mathrm{~cm}$

S Stewards Academy

Exams Questions:

3. Shown is a sector of a circle.

Calculate the length of the arc.

20 m

Taking $\pi=3.14$, calculate the perimeter of the semi-circle

1. A semi-circle has diameter 20 cm .
2. Shown is a sector.

The arc length is 4.4 cm .
Calculate the size of the angle.

Thin

Calculate the perimeter of the sector.
$6 \quad \mathrm{AOB}$ is a sector of a circle, centre O and radius 5.2 cm .
The angle of the sector is 80°.
Find the perimeter of the sector.
Give your answer correct to 3 significant figures.

(3 marks)

Week 5:

- LI: I can calculate the area of a circle and parts of a circle
- LI: I can calculate the area of a sector
- LI: I can solve circle problems in terms of Pi

Demonstration Videos:

https://corbettmaths.com/2013/12/22/area-of-a-circle-video-40-and-59/
https://www.youtube.com/watch?v=jmFw7xZNZ I - Area of a sector
https://www.youtube.com/watch?v=rPen5F-iaC4 - Circumference in terms of Pi
https://www.youtube.com/watch?v=k5hn5dWARGw - Area in terms of Pi
https://www.mathsgenie.co.uk/sectors-and-arcs.html
Tasks: Area of a Circle:
Question 1: Calculate the area of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

Question 2: Calculate the area of the following circles. Give your answers to 1 decimal place.
(a)

(b)

(c)

(d)

Question 7: Find the size of the radius for each of the following circles.
Give your answer to 2 decimal places.
(a)
(c)
(d)

(b)

Area $=65 \mathrm{~cm}^{2}$

$$
\text { Area }=100 \mathrm{~cm}^{2}
$$

NS, Stewards Academy

Challenge:

2. Find the area and perimeter of these shapes made from fractions of circles.
a)

b)

c)

d)

e)

g)

h)

Question 4: Calculate the shaded area for each shape below.
(a)

(b)

(c)

Exam Questions:

3. A circle has a diameter of 20 cm .

Work out the area of the circle.
Use $\pi=3.14$

7 A semi-circle has an area of $50 \mathrm{~m}^{2}$.
Find the perimeter of the semi-circle.
Give your answer correct to one decimal place.

8 A circular field has a diameter of 32 metres.
A farmer wants to build a fence around the edge of the field.
Each metre of fence will cost $£ 15.95$
Work out the total cost of the fence.

(Total for question 8 is $\mathbf{3}$ marks)

13 A circle is enclosed by a square as shown in the diagram.
Each side of the square measures 8 cm .
Find the area of the shaded region.
Give your answer correct to 1 decimal place.

Key Information:

Area of a sector $=\frac{\theta}{360} \times \pi r^{2} \quad$ (r is the radius of the circle, θ is the angle)

Question 2: Calculate the area of each of these sectors.
Give each answer to 2 decimal places and include suitable units.
(a)

7 cm
(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
297°

Question 3

Find the area of each of these sectors

$\$$ Stewards Academy

Challenges:

Question 4: The areas of these sectors have been given. Calculate x .
(a)

(b)
Area $=98 \mathrm{~cm}^{2}$

(c) \quad Area $=1 \mathrm{~m}^{2}$

Question 5: The areas of these sectors have been given. Calculate the missing angles.
(a)

(b)

(c)

Exam Practice:

3 The diagram shows a sector, centre O. The radius of the circle is 15.2 cm . The angle of the sector is 165°.

Calculate the area of the sector. Give your answer correct to 3 significant figures.

(3 marks)

SStewards Academy

Tasks: Area problems in terms of $\mathbf{P i}$

Question 6: Work out the area of the following circles. Leave your answer in terms of π
(a) A circle with radius 7 cm
(b) A circle with radius 1 cm
(c) A circle with diameter 10 cm
(d) A circle with radius 3 cm
(e) A circle with diameter 4 cm

Question 3: Find the area of these sectors.
Leave your answer in terms of $\boldsymbol{\pi}$
(a)

(b)

(c)

(e)

(f)

questions to the answers given
(d)

Match the

$36 \pi \mathrm{~cm}^{2}$
$14 \pi \mathrm{~cm}$

$25 \pi \mathrm{~cm}^{2}$

$9 \pi \mathrm{~cm}^{2}$

Week 6:

- LI: I can identify properties of 3d shapes
- LI: I can calculate the surface area of cones and spheres

Demonstration Video:

https://corbettmaths.com/2013/12/23/names-of-3d-shapes-video-3/ https://corbettmaths.com/2013/12/27/edges-face-vertices-video-5/ https://corbettmaths.com/2013/03/26/surface-area-of-a-sphere/ https://corbettmaths.com/2013/10/24/surface-area-of-cone/

Tasks: Properties of 3d Shapes
Question 1 Name each of the 3D shapes below
(a)

(d)

(g)
(b)

(e)

(c)

(f)

(h)

Question 2
Can you spot any mistakes in the question below?

	Faces	Edges	Vertices
Cube	12	6	8
Square-based Pyramid	5	5	5
Triangular Prism	9	9	6

"S Stewards Academy

Challenges: Match the Shape to its Properties

Exam Practice:

1 (a) How many edges are there on a square-based pyramid? Circle your answer.

4
5
8
12

1 (b) How many faces of a triangular prism are triangles? Circle your answer.

2
3
4 5
5. Below is a solid shape.

(a) What is the mathematical name for the shape?
(b) Write down the number of vertices
\qquad
(c) Write down the number of faces
\qquad
(d) Write down the number of edges

Tasks: Surface Area of Spheres

Question 1: Work out the surface area of each of these spheres.
Give each answer to 2 decimal places (you may use a calculator)
(a)

(b)

(c)

Question 2: Find the surface area of each of these spheres.
Give each answer in terms of $\boldsymbol{\pi}$ (you may not use a calculator)
(a)

(b)

(c)

Challenges:

Question 1: A glass paperweight is shown below.
The paperweight is a hemisphere with diameter 9 cm .
Find the surface area of the paperweight

Question 2: Show the surface area of a sphere with radius 6 cm is four times larger than the surface area of a sphere with radius 3 cm .

Question 3: The formula for the surface area of a sphere is $A=4 \pi r^{2}$
Make r the subject of the formula

Question 4: Find the size of x in each of the sphere below.
Give your answers to two decimal places (you may use a calculator)
(a)

Surface area $=50 \mathrm{~cm}^{2}$
(b)

Surface area $=940 \mathrm{~cm}^{2}$
(c)

Surface area $=4800 \mathrm{~cm}^{2}$

Question 5: Find the size of x in each of the sphere below. You may not use a calculator
(a)

Surface area $=16 \pi \mathrm{~cm}^{2}$
(b)

Surface area $=100 \pi \mathrm{~cm}^{2}$
(c)

Surface area $=3600 \pi \mathrm{~cm}^{2}$

2 The diagram shows a solid hemisphere with a radius of 10 cm .

Work out the total surface area of the hemisphere.
Give your answer in terms of π.

Surface Area of Cones

Area of base
Curved surface area

Question 1: Work out the surface areas of each of the following cones. Give each answer in terms of $\boldsymbol{\pi}$
(a)

(b)

(c)

Question 2: Work out the surface areas of each of the following cones. Give each answer to one decimal place.
(a)

(b)

(c)

Stewards Academy

Match the cards

6

Exam Practice:

The diagram shows a solid cone.

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The height of the cone is 12 cm .
The base of the cone has a diameter of 18 cm .
Work out the total surface area of the cone.
Give your answer in terms of π.
The diagram shows a solid cone.

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The slanted height of the cone is 12 cm .
The base of the cone has a radius of 6.5 cm .
Work out the total surface area of the cone.
Give your correct to 3 significant figures.

140 Unit 4 Fondallan Sprivit 2

Qusilemi	Quention Tithit
1	
2	Subitatin mendiverumburs
3	
4	Smilar shatpas
5	
6	Conwil timplituomals to frations
64	
7	
8	Ghatun probumisisint
9	
10.	Mrodian lor aimplod dila int
105	
11	Cakatinmprofil
121	Fidition and subtraction with devertals
12b	Ofotion wh decieslammers
13	Probubiliv of more thin enf wher
14	Inwime propornisi
15	
16	
17	Squrin fu-tern
± 8	Writinesters as mion
19	Conwirl fractons mepdicantapas
20	
2114	
21b	Fetatil ahape armand the crimis
22	Frathion olla rumbum, ratio
23	Plans and tumations
24	
25	Epross onti mumber asial liactiby of anothit
26	
27	Cakediny rulatio fraqueres
27b	
2 B	
29	
30	Hentrait murn proportion
31	Perimuler problurim wovin with almeria
32	Comparimemumber in menturd form

