ICT KS3 Year 8 Spring 2

Blended Learning Booklet

Name:

Form:

Aim to complete one lesson each week. Write out the title and LI and then complete the tasks.

The Knowledge Organiser on page 4 and 5 have some key information and vocabulary to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents

Page3: Big Picture - Year 8 Overview
Page 4 and 5: Knowledge Organiser
Page 6-11: Lesson 1
Page 13: Lesson 2
Pages 14 and 15: Lesson 3
Page 16: Lesson 4

"Stewards Academy

Stewards Academy

Lesson 1

LI: to learn how to convert binary to denary

LI to learn how to convert denary to binary

Play the game - https://learningcontent.cisco.com/games/binary/index.html

DART

Binary Numbers

Computers only process binary data, which means that all data is stored, and calculations are done, just using 0 s and 1 s . But luckily, you can convert binary numbers into normal (decimal) numbers.

Counting in Binary is Similar to Counting in Decimal

1) Our standard number system has ten

211111111111111111111111\%, Here, "decimal" is talking
about the number systern, about the number systern,
not a decimal number like 25 . \% not a dearnal number ike 25 . different digits ($0,1,2,3,4,5,6,7,8,9$). This is called decimal, denary or base- 10 .
2) The place values from right to left increase by powers of 10 (e.g. 1000, 100, 10, 1).
3) Binary only uses two different digits (0 and 1) - we call this base-2.
4) So in binary, the place values from right to left increase by powers of 2 (e.g. 8, 4, 2, 1).
5) The box on the right shows the decimal numbers 0-15 and their matching binary values.

$0=0$	$8=1000$
$1=1$	$9=1001$
$2=10$	$10=1010$
$3=11$	$11=1011$
$4=100$	$12=1100$
$5=101$	$13=1101$
$6=110$	$14=1110$
$7=111$	$15=1111$

Convert Binary Numbers to Decimal Using a Table

Using tables can help you quickly convert numbers from binary to decimal.

EXAMPLE: Convert the 4-bit binary number 1001 into a decimal number.

1) Draw a table with binary place values in the top row and the binary number in the bottom row.
2) Write down the powers of 2 that have a 1 in their column. In this case it's $\underline{8}$ and 1 .
3) Add these values together to find the decimal number.
$8+1=9$

For longer binary numbers, use the same method. You'll just need to add more columns.

EXAMPLE: Convert the 8-bit binary number 01011001 into a decimal number.

1) Draw up the table in the same way, but with | 8 columns. Put powers of 2 in the top row |
| :--- |
| and the binary number in the bottom row. |
2) Write down the powers of 2 that have a 1 in their column: $64,16,8$ and 1.
3) Add these values together to find the decimal number. $64+16+8+1=\mathbf{8 9}$

Stewards Academy

Binary to Denary Workbook

In this workbook, you will be asked to calculate denary numbers from their binary equivalent. Fill out the missing boxes on each table.

The first row are the position values
The second row is where the binary number is entered
The third row is the calculation, where the two are multiplied together
The fourth is the result
The fifth is where you work out the denary equivalent of your starting binary number.
Example 1: binary number $=00000011$

128	64	32	16	8	4	2	1
0	0	0	0	0	0	1	1
$128 * 0$	$64 * 0$	$32 * 0$	$16 * 0$	$8 * 0$	$4 * 0$	$2 * 1$	$1 * 1$
0	0	0	0	0	0	2	1
Answer	$2+1=\mathbf{3}$						

Example 2: binary number $=00001011$

128	64	32	16	8	4	2	1
0	0	0	0	1	0	1	1
$128 * 0$	$64 * 0$	$32 * 0$	$16 * 0$	$8 * 1$	$4 * 0$	$2 * 1$	$1 * 1$
0	0	0	0	8	0	2	1
Answer	$8+2+1=\mathbf{1 1}$						

S Stewards Academy

Task 1: binary number $=00001111$

128	64	32	16	8	4	2	1
0	0	0	0	1	1	1	1
$128 * 0$	$64 * 0$	$32 * 0$	$16 * 0$	$8 * 1$	$4 * 1$	$2 * 1$	$1 * 1$
Answer							

Task 2: binary number $=00101010$

128	64	32	16	8	4	2	1
0	0	1	0	1	0	1	0
$128 * 0$	$64 * 0$	$32 * 1$	$16 * 0$	$8 * 1$	$4 * 0$	$2 * 1$	$1 * 0$
Answer							

Task 3: binary number $=01011011$

128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1
128^{*}	64^{*}	322^{*}	16^{*}	8^{*}	4^{*}	2^{*}	1^{*}
Answer							

Stewards Academy

Task 4: binary number $=00101101$

128	64	32	16	8	4	2	1
Answer							

Task 5: binary number $=11001100$

128	64	32	16	8	4	2	1
Answer							

Task 6: binary number $=11100010$

128	64	32	16	8	4	2	1
Answer							

Binary Numbers

Now it's time to learn how to convert the other way - from decimal numbers to binary numbers.

Convert Decimal to Binary by Subtracting

The easiest way to learn the method here is to look at an example:

EXAMPLE: Convert the decimal number 71

 into an 8 -bit binary number.1) Draw a table with 8 columns. Put powers of 2 in the top row.
2) 71 is the running total that you subtract numbers from.
3) Starting from the left of the table, if the top row value is less than or equal to the running total, then subtract it from the running total. E.g. $128>71$, so the running total stays at 71 . In the next column, $64<71$ so $71-64=7$ is the new running total.
4) Put a 1 in any column where you subtracted from the running total.
5) Then read off the binary number from the bottom row of the table.

So 71 as a binary number is $\mathbf{0 1 0 0 0 1 1 1}$.

Denary to Binary Workbook

Example:

128	64	32	16	8	4	2	1
0	0	0	0	0	0	1	1

Example	Denary $=3$
Answer in binary	00000011
Calculation for answer	$(1 * 1)+(2 * 1)=3$

Task 1:

128	64	32	16	8	4	2	1
0	0	0	0	0	1	1	0

Task 1	Denary $=6$
Answer in binary	
Calculation for answer	$(2 * 1)+\left(4^{*} 1\right)=6$

Task 2:

128	64	32	16	8	4	2	1

Task 2	Denary $=15$
Answer in binary	
Calculation for answer	

Task 3:

128	64	32	16	8	4	2	1

Task 3	Denary $=21$
Answer in binary	
Calculation for answer	

Task 4:

128	64	32	16	8	4	2	1

Task 4	Denary $=39$
Answer in binary	
Calculation for answer	

Task 5:

128	64	32	16	8	4	2	1

Task 5	Denary $=54$
Answer in binary	
Calculation for answer	

Task 6:

128	64	32	16	8	4	2	1

Task 6	Denary $=78$
Answer in binary	
Calculation for answer	

Task 7:

128	64	32	16	8	4	2	1

Task 7	Denary $=99$
Answer in binary	
Calculation for answer	

Lesson 2
L: to understand different types of software.
DART

Software

The term software is used to describe the programs that you run on your computer. There are different types of software, one of which helps your computer to run at it's best - utility software.

There are Two Main Types of Software

1) Application software is software that helps the user perform specific tasks.
2) Common types of application software are web browsers, word processors (see page 44), email clients and games.
3) System software helps to run, maintain and configure a computer.
4) The two main types of system software are utility software (see below) and the operating system (see next page).

Task

Read the information on the BBC Bitesize website. Click through all 3 pages and have a go at the test.

https://www.bbc.co.uk/bitesize/guides/zcxgr82/revision/1

What is software?

Hardware is the physical parts of the computer and software is
the programs that run on a computer.
There is a close relationship between hardware and software.
Without software, hardware is very limited and without
hardware, software would not be able to run. They need each other.
Questions

- Now that you understand more about software. Can you list 5 examples of application software you have used before.
- Can you list 5 examples of utility software? (You may need to use the internet to research this.)
- Can you explain what two of those pieces of utility software do?

Extension (Challenging)

Research and explain the role disk defragmenter does in a computer? Clue: it is something to do with a hard drive.

Lesson 3

LI: To understand what cloud storage is
DART

You can Store Files in Cloud Storage over the Internet

1) Cloud storage is a service where someone can upload their files to a server over the Internet.

311111111111111111111116
2) There are benefits of using cloud storage:

The server might use HDDs
ว1 or SSDs to store the data

- The files can be accessed by the user from anywhere with an Internet connection.
- The user doesn't have to buy the expensive storage devices themselves.

3) However, there are also some negatives:

- There is normally a fee to use the cloud storage (although some services are free).
- If the user doesn't have an Internet connection, they cannot access their files.

4) The company providing the cloud storage has a responsibility to keep the data secure. Some users prefer this as they don't have to do anything themselves, though others dislike the fact that they have no control over the security of their data.

Can you list 5 companies that offer a cloud storage service?
1.
2.
3.
4.
5.

Can you create a poster either on paper or on a computer, about the advantages and disadvantages of cloud storage over other storage devices?

The video below may help you identify some of these advantages and disadvantages.

https://www.youtube.com/watch?v=6fvofiYR-LE

Extension - GCSE question

Computer users will often store their data 'in the cloud'. State three reasons why you might want to use cloud storage rather than local storage.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 3 marks)

Lesson 4

LI: to learn the difference between how bitmap images and vector images are stored differently in a computer.

DART

Images

Images can also be represented using binary code. It's quite clever, so let's find out how it works...

Bitmap Images and Vector Images Are Saved Differently

1) A bitmap image is made up of a series of coloured dots (pixels). Bitmap image files are large as every pixel is saved individually.
2) A vector image is made up of a set of lines and shapes.

Vector image files are small as only the information needed
about bitmap and vector to draw the shapes is saved (e.g. size, position, colour, etc.).

Each Pixel is Represented by a Binary Code

1) The colour of each pixel in a bitmap image is represented by a binary code.
2) The number of colours that an image can use is related to the number of bits the code has.
3) Images with only two colours only need 1-bit to represent each pixel - 0 for one colour and 1 for the other colour.
4) 2-bit images can be made up of four colours. Each pixel can be represented by one of four binary values - $00,01,10$ and 11 .

You will need a login to the website "teach ict" this lesson.
Please see below
Your username is: cm187nq
The student password is: python4
Click on the link and type in the username and password
http://teach-ict.com/2016/ks3/sows/sow5/s lesson3.php
Task
Start by watching the video.
Try to write down 10 words related to the topic of Bitmap and Vector images
Continue to read the information further down the page. Complete all activities.
Please upload picture s of your work to class charts.

