ICT KS3 Year 7 Spring 1

Blended Learning Booklet

Name:

Form:

Aim to complete one lesson each week. Write out the title and LI and then complete the tasks.

The Knowledge Organiser on page 4 and 5 have some key information and vocabulary to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page3: Big Picture - Year 7 Overview
Page 4 and 5: Knowledge Organiser
Page 6-10: Lesson 1
Page 11-15: Lesson 2
Pages 16 - 20: Lesson 3
Page 20 - Lesson 4 - Assessment will be sent separately

S Stewards Academy

Lesson 1
LI: Understand how to convert binary to denary

DART

Binary Numbers

Computers only process binary data, which means that all data is stored, and calculations are done, just using 0 s and 1 s. But luckily, you can convert binary numbers into normal (decimal) numbers.

Counting in Binary is Similar to Counting in Decimal

1) Our standard number system has ten

N11111111111,11111111111/11,
Here, decimal is talking
z about the number system,
zot a decimal number like 25.

$$
\begin{array}{ll}
0=0 & 8=1000 \\
1=1 & 9=1001 \\
2=10 & 10=1010 \\
3=11 & 11=1011 \\
4=100 & 12=1100 \\
5=101 & 13=1101 \\
6=110 & 14=1110 \\
7=111 & 15=1111
\end{array}
$$

Play the game below - Follow the link
https://learningcontent.cisco.com/games/binary/index.html

Convert Binary Numbers to Decimal Using a Table

Using tables can help you quickly convert numbers from binary to decimal.

EXANPLE: Convert the 4-bit binary number 1001 into a decimal number.

1) Draw a table with binary place values in the top row and the binary number in the bottom row
2) Write down the powers of 2 that have a 1 in their column. In this case it's $\underline{8}$ and 1 .
3) Add these values together to find the decimal number.
$8+1=9$

For longer binary numbers, use the same method. You'll just need to add more columns.

EXANPLE: Convert the 8-bit binary number 01011001 into a decimal number.

1) Draw up the table in the same way, but with | 8 columns. Put powers of 2 in the top row |
| :--- |
| and the binary number in the bottom row. |
2) Write down the powers of 2 that have a 1 in their column: 64, 16, 8 and 1.
3) Add these values together to find the decimal number. $64+16+8+1=\mathbf{8 9}$

"Stewards Academy

Binary to Denary Workbook

In this workbook, you will be asked to calculate denary numbers from their binary equivalent. Fill out the missing boxes on each table.

The first row are the position values
The second row is where the binary number is entered
The third row is the calculation, where the two are multiplied together
The fourth is the result
The fifth is where you work out the denary equivalent of your starting binary number.
Example 1: binary number $=00000011$

128	64	32	16	8	4	2	1
0	0	0	0	0	0	1	1
$128 * 0$	$64 * 0$	$32 * 0$	$16 * 0$	$8 * 0$	$4 * 0$	$2 * 1$	$1 * 1$
0	0	0	0	0	0	2	1
Answer	$2+1=3$						

Example 2: binary number $=00001011$

128	64	32	16	8	4	2	1
0	0	0	0	1	0	1	1
$128 * 0$	$64 * 0$	$32 * 0$	$16 * 0$	$8 * 1$	$4 * 0$	$2 * 1$	$1 * 1$
0	0	0	0	8	0	2	1
Answer	$8+2+1=\mathbf{1 1}$						

S Stewards Academy

Task 1: binary number $=00001111$

128	64	32	16	8	4	2	1
0	0	0	0	1	1	1	1
$128 * 0$	$64 * 0$	$32 * 0$	$16 * 0$	$8 * 1$	$4 * 1$	$2 * 1$	$1 * 1$
Answer							

Task 2: binary number $=00101010$

128	64	32	16	8	4	2	1
0	0	1	0	1	0	1	0
$128 * 0$	$64 * 0$	$32 * 1$	$16 * 0$	$8 * 1$	$4 * 0$	$2 * 1$	$1 * 0$
Answer							

Task 3: binary number $=01011011$

128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1
128^{*}	64^{*}	322^{*}	16^{*}	8^{*}	4^{*}	2^{*}	1^{*}
Answer							

SStewards Academy

Task 4: binary number $=00101101$

128	64	32	16	8	4	2	1
Answer							

Task 5: binary number $=11001100$

128	64	32	16	8	4	2	1
Answer							

Task 6: binary number $=11100010$

128	64	32	16	8	4	2	1
Answer							

Task 7: binary number $=01101001$

128	64	32	16	8	4	2	1
Answer							

SStewards Academy

Task 8: binary number $=00010001$

128	64	32	16	8	4	2	1
Answer							

Task 9: binary number $=10000101$

128	64	32	16	8	4	2	1
Answer							

Task 10: binary number $=00100111$

128	64	32	16	8	4	2	1
Answer							

Task 11: binary number $=11101110$

128	64	32	16	8	4	2	1
Answer							

Stewards Academy

Lesson 2

LI: to understand how to convert denary to binary
Opening question?
Have we done this before?
Play the game below - Follow the link
https://learningcontent.cisco.com/games/binary/index.html

We have converted denary to binary in the game we played last lesson. Spend 5 minutes playing the game again to refresh your memory.

DART

Binary Numbers

Now it's time to learn how to convert the other way - from decimal numbers to binary numbers.

Convert Decimal to Binary by Subtracting

The easiest way to learn the method here is to look at an example:
EXANPLE: Convert the decimal number 71 into an 8 -bit binary number.

1) Draw a table with 8 columns. Put powers of 2 in the top row.
2) 71 is the running total that you subtract numbers from.
3) Starting from the left of the table, if the top row value is less than or equal to the running total, then subtract it from the running total. E.g. $128>71$, so the running total stays at 71 . In the next column, $64<71$ so $71-64=7$ is the new running total.
4) Put a 1 in any column where you subtracted from the running total.
5) Then read off the binary number from the bottom row of the table.

So 71 as a binary number is $\mathbf{0 1 0 0 0 1 1 1}$.

Denary to Binary Workbook

Example:

128	64	32	16	8	4	2	1
0	0	0	0	0	0	1	1

Example	Denary $=3$
Answer in binary	00000011
Calculation for answer	$(1 * 1)+(2 * 1)=3$

Task 1:

128	64	32	16	8	4	2	1
0	0	0	0	0	1	1	0

Task 1	Denary $=6$
Answer in binary	
Calculation for answer	$\left(2^{*} 1\right)+\left(4^{*} 1\right)=6$

§Stewards Academy

Task 2:

128	64	32	16	8	4	2	1

Task 2	Denary $=15$
Answer in binary	
Calculation for answer	

Task 3:

128	64	32	16	8	4	2	1

Task 3	Denary $=21$
Answer in binary	
Calculation for answer	

Task 4:

128	64	32	16	8	4	2	1

Task 4	Denary $=39$
Answer in binary	
Calculation for answer	

§Stewards Academy

Task 5:

128	64	32	16	8	4	2	1

Task 5	Denary $=54$
Answer in binary	
Calculation for answer	

Task 6:

128	64	32	16	8	4	2	1

Task 6	Denary $=78$
Answer in binary	
Calculation for answer	

Task 7:

128	64	32	16	8	4	2	1

Task 7	Denary $=99$
Answer in binary	
Calculation for answer	

S Stewards Academy

Task 8:

128	64	32	16	8	4	2	1

Task 8	Denary $=106$
Answer in binary	
Calculation for answer	

Task 9:

128	64	32	16	8	4	2	1

Task 9	Denary $=180$
Answer in binary	
Calculation for answer	

Task 10:

128	64	32	16	8	4	2	1

Task 10	Denary $=200$
Answer in binary	
Calculation for answer	

S Stewards Academy

Lesson 3
LI: to understand the rules of binary addition
DART

Add Binary Numbers Using Column Addition

1) Adding binary numbers may look a bit strange at first. This is because you cannot have the number 2 in binary.
2) To help you add in binary, you need to remember these four rules.

- $0+0=0$
- $1+0=1$
- $1+1=10$

3) The example below shows how to do column addition in binary.

- $1+1+1=11$

EXANPLE: Add the following 4-bit binary numbers together: 0110 and 0111

3) You can check that you have the correct answer by converting everything into decimal and adding them: $0110=6,0111=7$ and $1101=13.6+7=13 \checkmark$

Adding Binary Numbers Workbook

Rules

0		$0+1=1$		$\mathbf{1 + 1}=10$		$\mathbf{1 + 1 + 1 = 1 1}$	
0	+	0	+	1	+	1	+
0		1		1		1	
$=0$		$=1$		$=10$		$=11$	

S Stewards Academy

Example

0	0	0	1	1	1	0	1
1	0	0	1	1	0	1	1
		1	1	1	1	1	
1	0	1	1	1	0	0	0

Row 1 and 2 contains the binary numbers to be added
Use Row 3 to mark where numbers were "carried over" from the last column
Put your final answer to the question in Row 4

Task 1: $01111101+01100010$

0	1	1	1	1	1	0	1
0	1	1	0	0	0	1	0

Task 2: $11010010+00000110$

1	1	0	1	0	0	1	0
0	0	0	0	0	1	1	0

Task 3: $01100110+00100001$

0	1	1	0	0	1	1	0
0	0	1	0	0	0	0	1

Task 4: $10101010+01000111$

1	0	1	0	1	0	1	0
0	1	0	0	0	1	1	1

Task 5: $10110001+00011010$

1	0	1	1	0	0	0	1
0	0	0	1	1	0	1	0

Task 6: $00011101+10001011$

0	0	0	1	1	1	0	1
1	0	0	0	1	0	1	1

Find the spy using binary addition
Top secret information has been stolen from a government database and you have just received a coded message which contains the location of the spy. To decrypt the message add up the binary numbers below and convert the results into denary (base 10).

Then go onto the second page and find the letter for each number. This will spell out the location of the spy.

Remember $0+0=0,1+0=1,0+1=1,1+1=($ carried $) 10$
$+\quad \underline{00010011}$

Converted into denary = \square

00000101
 $+00100100$

Converted into denary = \square

00010000
 $+00010101$

00011001
 $+\quad 00011010$

00011001
 $+00010000$

Converted into denary = \square
\qquad Converted into denary = \square

Use the table to decrypt the message by writing the letter that is above the denary number you found from the binary sums above. Write each letter in the boxes below to reveal to location of the spy.

The spy and the data are in

\square

A	B	C	D	E	F	G	H	I	J	K	L
1	2	3	4	5	6	7	8	9	10	11	12
M	N	O	P	Q	R	S	T	U	V	W	X
13	14	15	16	17	18	19	20	21	22	23	24
Y	Z	a	b	c	d	e	f	g	h	i	J
25	26	27	28	29	30	31	31	33	34	35	36
k	l	m	n	o	p	q	r	s	t	u	v
37	38	39	40	41	42	43	44	45	46	46	48
w	X	y	z	!	$*$	l	l	+		\&	@
49	50	51	52	53	54	55	56	57	58	59	60

Lesson 4

Assessment lesson to see if you have understood Binary/ Denary and the rules associated to binary addition.

