Maths Spring 1

Year 10 Higher

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 10 Overview
Page 4: Knowledge Organiser
Page 5-11: Week 1 - Congruent Triangles and Similar Shapes
Page 12-17: Week 2 - Pythagoras' Theorem
Page 18-29: Week 3 - Trigonometry
Page 30-35: Week 4 - Trigonometry
Page 36-40-: Week 5 - Algebraic Fractions
Page 41-44: Week 6 - Algebraic Fractions
Page 45: Assessment Ladder

SStewards Academy

"Stewards Academy

Year 10-Higher
Spring One
Congruency \& Similarity, Pythagoras'
Theorem, Trigonometry, Algebraic fractions
:---:
Algebraic fractions - 37

\$ Stewards Academy

Week 1:

- LI: Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs

Demonstration Videos:

https://corbettmaths.com/2012/08/10/congruent-and-similar-shapes/
https://corbettmaths.com/2013/04/15/congruent-triangles/
https://www.mathsgenie.co.uk/congruence.html
Tasks:
Question 1: The following pairs of triangles are congruent, state the condition that shows they are congruent.
(a)
(b)
(c)

(d)

 triangle add up to?
(g)

(h)

Hint: What do the angles in a

(e)

(f)

(i)

Question 2: Shown are six triangles.
Which triangles are congruent?

"Stewards Academy

Match up the triangles which are congruent and state the condition that shows they are congruent. Note: some may not be congruent.

S Stewards Academy

Q1.

(a) Which two shapes fit together to make a rectangle?

Answer \qquad and \qquad
(b) Which two shapes are congruent?

Answer \qquad and \qquad
(c) Which two shapes have the same area as shape B?

Answer \qquad and \qquad
Q2.
These two triangles are congruent.
Not drawn accurately

(a) What is the size of angle P ?

Circle your answer.
none of these
(b) What is the length of $P R$?

Circle your answer.
5 cm
8 cm
10 cm
none of these

§Stewards Academy

Demonstration Videos:

https://corbettmaths.com/2012/08/10/congruent-and-similar-shapes/
https://corbettmaths.com/2013/11/16/similarshapes/

Important Information:

You need to find the scale factor of enlargement to work out the missing sides. Angles in similar shapes are the same!

Tasks:

Work out whether these shapes are similar or not

Stewards Academy

Task 2:

Question 2: These pairs of shapes are not similar.
Explain why.
(a)

(b)

Question 3: Rectangles ABCD and EFGH are similar.

Work out the size of EF

Question 4: Triangles ABC and DEF are similar.
(a) Work out the length of DF
(b) Work out the length of BC

Question 5: Triangles GHI and JKL are similar.
(a) Write down the size of angle JKL
(b) Work out the length of GI

Question 6: Trapezium ABCD and trapezium EFGH are similar.
(a) Work out the length of EF
(b) Work out the length of AD

Question 7: The triangles below are similar
(a) Find the size of x
(b) Find the size of y

S Stewards Academy

Exam questions:

Q1.
Triangles $A B C$ and $D E F$ are similar.

(a) Work out the value of x.

Q3.
A pattern is made from two similar trapeziums.
Not drawn accurately
(b) Write down the size of angle y.

Show that the shaded area is $294 \mathrm{~cm}^{2}$
These two shapes are similar.

Work out the value of X.

Q4.
Here are two right-angled triangles.

(a) Assume that triangles $A O B$ and $P Q O$ are similar.

Work out the area of triangle $P Q O$.
(b) In fact, QP is longer than it would be if the triangles were similar.

How does this affect your answer to part (a)?
(1)
(Total 4 marks)
A and B are similar shapes.
B is an enlargement of A with scale factor 1.5

Not drawn
accurately

Work out the values of x, h and w.

SStewards Academy

Week 2:

- LI: Apply the formula for Pythagoras' Theorem to find angles and lengths in right angled triangles and, where possible, general triangles in two and three dimensional figures

Demonstration Videos:

https://corbettmaths.com/2012/08/19/pythagoras-video/
https://corbettmaths.com/2013/06/22/pythagoras-rectangles-and-isosceles-triangles/
https://corbettmaths.com/2013/06/22/showing-a-triangle-is-right-angled/
https://www.mathsgenie.co.uk/pythagoras.html
3D Pythagoras Video - Corbettmaths

Tasks:

Question 1: For each right angle triangle below, work out x
(a)

(b)

(c)

Question 2: Calculate x
Give each answer to 2 decimal places.
(a)

(b)

(c)

(d)

(e)

(f)

SStewards Academy

Question 3: Calculate x
Include suitable units and give each answer to 1 decimal place.
(a)

(b)

Question 4: For each right angle triangle below, work out x
(c)

(a)

(b)

(c)

© CORBETTMATHS 2018

Question 6: Calculate x for each right angle triangle.
Give each answer to 2 decimal places.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(I)

§Stewards Academy

Highlight the relevant information for the last four questions and try to draw the triangle out.
Pythagoras Codebreaker

A	B	C	D	E	F	G	H	I	J	K	L	M
6.9	5.8	6.3	23.4	8.1	14.1	9.5	4.9	16.9	18.3	18	5.7	26.4
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
27	36.1	4.3	7.2	9.2	22.4	23	3.7	3.6	21.3	22.9	17	32

Answer the questions below (all answers are rounded to 1 decimal place), link your answers to the table above to reveal what I felt about the German sausage joke:

| Calculate the missing length: |
| :--- | :--- | :--- | :--- |
| 20.2 m | | $?$ | |
| | | | |
| | | | |

A 4 metre long ladder is leaning against a wall. The base of the ladder is 1.5 metres from the base of the wall. How high e the wall is the top of the ladder?	I travel 7 km North then 6 km West. How far am I from my start point?	The string attached to my kite is 30m long and the kite is immediately above a friend of mine who is 20 m away from me. How high is my kite?	A 50 m zip wire is attached to them top of a tower and to the ground 44.4 m from the base of the tower. How tall is the tower?

Exam Questions:

Apply

Question 1: A 9m ladder is placed against a wall.
The foot of the ladder is 1.5 m from the foot of the wall. How far up the wall does the ladder reach?

Question 2: Shown is a square with side length 5 cm . Find the length of the diagonal, x.

Question 3: Shown is a right angle triangle. Calculate:
(a) the perimeter of the triangle.

Question 4: A rectangle is 20 cm long and 8 cm wide.
Find the length of the diagonal of the rectangle.

Question 5: An airplane is flying from Redville to Leek.
The airplane flies 50 miles East and then 180 miles South.
How far is Leek from Redville directly?

Question 6: A frame is made from wire.
The frame is a trapezium
Calculate the total amount of wire needed to make the frame.

Give your answer to 1 decimal place.

Stewards Academy

Question 7: ABC is an isosceles triangle.
(a) Find h.
(b) Find the area of the triangle.

Question 8: Shown is an equilateral triangle.
Find the area of the equilateral triangle.

Question 9: Stanley has drawn a right angle triangle.

One side is 14 cm and another is 18 cm .
There are two possible lengths for the third side.
What are they?

Question 10: ABC and BCD are right angle triangles.
Find the length of $A B$

Question 11: A wooden flagpole is 25 foot tall.
In a storm, the flagpole is broken and its top touches the ground 5 foot from the base.

Find the lengths of the segments of the flagpole.

Question 12: Benjamin has completed this question. Can you spot any mistakes?

Stewards Academy

Question 1: \quad ABCDEFGH is a cube with side length 5 cm .
(a) Work out the length of AC
(b) Work out the length of AG

Question 2: ABCDEFGH is a cuboid.
$\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}$ and $\mathrm{CG}=3 \mathrm{~cm}$.
(a) Work out the length of BG
(b) Work out the length of BD
(c) Work out the length of HC

(d) Work out the length of AG

Question 3: Shown is a triangular prism. Triangle ABC is a right angle triangle.
(a) Work out the length of BC
(b) Work out the length of CD
(c) Work out the length of BF

Question 4: Shown is a square based pyramid ABCDE. F is the midpoint of CD . M is the point on the base directly below the vertex E . $\mathrm{AD}=4 \mathrm{~cm} \quad$ and $\quad \mathrm{CE}=7 \mathrm{~cm}$

Calculate the length of
(a) AC
(b) AM
(c) EM
(d) EF

S Stewards Academy

Week 3:

- LI: Know and use the trigonometric ratios

Demonstration Videos:

https://corbettmaths.com/2013/03/30/trigonometry-introduction/
https://corbettmaths.com/2013/03/30/trigonometry-missing-sides/
https://corbettmaths.com/2013/03/30/trigonometry-missing-angles/
https://www.mathsgenie.co.uk/sohcahtoa.html

Important Information:

You will need a calculator to complete the majority of these tasks

You will be using these three buttons within this topic. Use the videos to understand how to use them and ask your teacher if you are unsure!

\$ Stewards Academy

A right-angled triangle has 4 parts.
$\theta=$ Theta is either angle.

Hypotenuse - always opposite the right-angle \& always longest.
Opposite-always opposite θ.
Adjacent - next to θ.

Remember this SOHCAHTOA

SOH	CAH	TOA
$\sin \theta=\frac{O p p}{H y p}$	$\cos \theta=\frac{A d j}{H y p}$	$\operatorname{Tan} \theta=\frac{O p p}{A d j}$
$\sin \theta$	H	$\cos \theta$

Stewards Academy

Trigonometry: Labelling Right-Angled Triangles

For each triangle, label each side with a letter:
H: Hypotenuse
O: Opposite
A: Adjacent
[the longest side)
[opposite the labelled angle)
[next to the labelled angle)
A)

B)

H)

F)

§Stewards Academy

© Stewards Academy

Match up the length of the missing side with one of the answers on the right hand side

$\underset{\sim}{\underset{\sim}{1}}$	$\underset{\sim}{\hat{N}}$	$$	$\stackrel{N}{N}$	Nọ	on	$\underset{\text { ín }}{\text { İ }}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} n \\ \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{i}} \end{aligned}$	$\stackrel{ষ}{寸}$	$\begin{aligned} & \text { Ǹ } \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\underset{\sigma}{7}}$	Ñ	No

Question 2. Find the lengths of the sides labelled x below.
(a)
(b)

(c)

(d)
(e)

(f)

(a)
01

(k)
(h)
(I)

28 cm

(l)

Exam Questions:

The diagram shows two buildings, A and B.
The heights of the buildings are in the ratio 3. 5

Work out the height of building B.
\qquad

§Stewards Academy

Find the missing angle using trigonometry and match it up to the answers below (the

44.4°
63.4°
38.9°

Question 1: Find the size of the missing angles in the triangles below.
(a)

(b)

(c)

(d)

(e)

(f)

(g)
(h)

(i)
(i)

(k)
(l)

Stewards Academy

Trigonometry Codebreaker 1

Exam Questions:
$1 \quad A B C$ is a right-angled triangle.

(a) Work out the size of angle $B A C$.

Give your answer correct to 1 decimal place.

The length of side $A B$ is reduced by 1 cm .
The length of side $A C$ is still 9 cm .
Angle $A C B$ is still 90°
(b) Will the value of $\cos A B C$ increase or decrease?

You must give a reason for your answer.

The diagram shows a quadrilateral.
Not drawn accurately

Work out the size of angle x.
Answer \qquad

Calculate the size of angle $B A C$.

Calculate the size of angle $A C B$.
$A B C$ is a right-angled triangle.
D is a point on $A C$.
$B D$ is perpendicular to $A C$.

Not drawn accurately
(a) Use triangle $A B C$ to write $\cos \theta$ in terms of X

$$
\cos \theta=
$$

\qquad
(b) By writing another expression for $\cos \theta$ in terms of X, or otherwise. work out the value of x.

$$
k=
$$

Stewards Academy

Week 4:

- LI: Calculate the exact value of \sin and $\cos 0,30,45,60$ and 90 degrees and solve more complex exam style problems involving ratio and trig

Demonstration Videos:

https://corbettmaths.com/2013/04/20/exact-trigonometric-values/
https://www.mathsgenie.co.uk/exact-trig-values.html
https://corbettmaths.com/2013/03/30/trigonometry-introduction/ https://corbettmaths.com/2013/03/30/trigonometry-missing-sides/
https://corbettmaths.com/2013/03/30/trigonometry-missing-angles/

Important Information:

You will need to learn these off by heart - use the videos to explore how to memorise them!

Exact Values of Trigonometric Functions

Angle (θ) (nyen	0°	30°	45°	60°	90°
$\sin (\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos (\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan (\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Nat Difina

\$Stewards Academy

Tasks:

Exact trigonometry values

Question 1: Write down the exact values of each of the following
(a) $\sin 30^{\circ}$
(b) $\cos 0^{\circ}$
(c) $\tan 45^{\circ}$
(d) $\sin 90^{\circ}$
(e) $\sin 0^{\circ}$
(f) $\cos 60^{\circ}$
(g) $\tan 0^{\circ}$
(h) $\sin 45^{\circ}$
(i) $\cos 30^{\circ}$
(j) $\tan 60^{\circ}$
(k) $\cos 90^{\circ}$
(l) $\sin 60^{\circ}$
(m) $\cos 45^{\circ}$
(n) $\tan 30^{\circ}$

Question 2: Write down the exact values of each of the following
(a) $\cos 60^{\circ}+\sin 30^{\circ}$
(b) $\cos 0^{\circ}+\tan 45^{\circ}+\sin 90^{\circ}$
(c) $\sin 30^{\circ}+\sin 90^{\circ}$
(d) $\sin 45^{\circ}+\cos 45^{\circ}$

Question 3: Write down the exact values of each of the following
(a) $\sin 45^{\circ}+\cos 45^{\circ}$
(b) $\tan 30^{\circ}+\tan 60^{\circ}$
(c) $\cos 30^{\circ}+\sin 60^{\circ}$

1 Write down the exact value of $\sin (45)$
(1 mark)
2 Write down the exact value of $\cos \left(90^{\circ}\right)$
(1 mark)
3 Write down the exact value of $\tan (30)$
(1 mark)
$4 \quad$ Write down the exact value of $\sin \left(30^{\circ}\right)$
(1 mark)
5 Write down the exact value of $\tan (45)$
(1 mark)
$6 \quad$ Write down the exact value of $\cos \left(0^{\circ}\right)$
(1 mark)
$7 \quad$ Write down the exact value of $\sin (60)$
(1 mark)
8 Write down the exact value of $\sin (0)$
(1 mark)

Question 1: Using the triangle below, explain each of the following.
(a) $\sin \left(30^{\circ}\right)=\frac{1}{2}$
(b) $\quad \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
(c) $\tan \left(30^{\circ}\right)=\frac{\sqrt{3}}{3}$
(d) $\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}$
(e) $\quad \cos \left(60^{\circ}\right)=\frac{1}{2}$
(f) $\tan \left(60^{\circ}\right)=\sqrt{3}$

Question 2: Using the triangle below, explain each of the following.
(a) $\tan \left(45^{\circ}\right)=1$
(b) $\sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}$
(c) $\quad \cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}$

Question 3: Conor says that $\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$ Is he correct?
5. A ladder is placed against a wall.

To be safe, it must be inclined at between 70° and 80° to the ground.

(a) Is the ladder safe?
(b) Calculate the length of the ladder.
6. The diagram shows two right-angled triangles.

Calculate the value of x .

The diagram shows the side view of a step ladder with a horizontal strut of length 48 cm The strut is one third of the way up the ladder.

The symmetrical cross section of the ladder shows two similar triangles.

Work out the vertical height, $h \mathrm{~cm}$, of the ladder.

A pentagon is made from a square and an isosceles triangle.

Work out the perimeter of the pentagon.
14. A boy is flying a kite.

The string is held 80 cm above the ground.
The kite is on a string which is 8 m long.
The string makes an angle of 30° with the horizontal.

Calculate the height of the kite above the ground.

In each question, draw a diagram unless it has been given.

Question 1: A 4 metre long ladder is placed against a wall. The angle between the ladder and the ground is 75°. How far up the wall does the ladder reach?

Question 2: A 5 metre long ladder is placed against a wall. It reaches 4.3 metres up the wall. What is the angle between the ladder and the ground?

Question 3: A ladder is placed against a wall.
The base of the ladder is 4 foot from the bottom of the wall.
The angle between the ladder and the ground is 80°.
What is the length of the ladder?
Question 4: A rectangle is 12 cm long and 5 cm wide. Find the size of the angle marked x .

Question 5: (a) Find the length of AC.
(b) Find the length of $A B$.
(c) Find the perimeter of triangle ABC .
(d) Find the area of triangle ABC.

Stewards Academy

Week 5:

- LI: Apply rules of algebraic simplification to fractions using all four operations

Demonstration Videos:

Simplifying algebraic fractions Video - Corbettmaths
Adding algebraic fractions Video - Corbettmaths

Tasks:

Question 1: Simplify the following algebraic fractions
(a) $\frac{42 x y z}{56}$
(b) $\frac{45 a b}{60 a b c}$
(c) $\frac{16 m n}{18 n}$
(d) $\frac{40 x^{2} y}{32 x y}$
(e) $\frac{17 c f}{34 c^{3}}$
(f) $\frac{8 x^{4}}{2 x^{2}}$
(g) $\frac{33 a^{2} b^{2}}{44 a^{3} b}$
(h) $\frac{12 x^{3}}{20 x^{7}}$

Question 2: Simplify the following algebraic fractions
(a) $6 x+8$
2
(b) $9 x-12$
3
(c) $35 x^{2}+20$
5
(d) $7 m-70 n^{3}$
7
(e) $10 c+25$
15
(f) $8 w+2-4 x$ 12
(g) $9 x^{2}+12 x+33$
6
(h) $\frac{3 x^{2}+5 x}{x}$
(i) $\frac{3 x^{3}-7 x^{2}}{x}$
(i) $8 x^{6}+x^{4}+3 x$
x
(k) $\frac{10 x^{7}+15 x^{5}-30 x^{4}}{5 x}$
(I) $\frac{3 c^{6}-15 c^{4}}{6 c}$
(m)
(n)

$$
\frac{6 c^{9}-12 c^{3}}{3 c^{2}}
$$

(o)

$$
\frac{6 c^{6}+2 c^{2}}{4 c^{4}}
$$

ES Stewards Academy

Question 3: Simplify the following algebraic fractions
(a) $\frac{(x+6)(x+3)}{(x+3)}$
(b) $\frac{(x-1)(x+1)}{(x-1)}$
(c) $\frac{(x-3)}{(x-4)(x-3)}$
(d) $\frac{(x+7)^{2}}{(x+7)}$
(e) $\frac{(x-3)(x+2)}{(x+2)(x+9)}$
(f) $\frac{(x+2)(x+4)^{2}}{(x+4)}$
(g) $\frac{(x+1)(x+2)(x+3)}{(x+2)(x+3)(x+4)}$
(h)

$$
\frac{x(x+3)^{2}}{x(x+1)(x+3)}
$$

Question 4: Simplify the following algebraic fractions
(a) $\frac{x^{2}+5 x+4}{x^{2}+4 x+3}$
(b) $\frac{x^{2}+6 x+9}{x^{2}-2 x-15}$
(c) $\frac{x^{2}-2 x}{x^{2}+2 x-8}$
(d) $\frac{x^{2}-7 x+10}{x^{2}+3 x-10}$
(e) $\frac{x^{2}+8 x+15}{x^{2}-x-12}$
(f) $\frac{x^{2}+13 x+40}{x^{2}+14 x+48}$
(g) $\frac{x^{2}-2 x-8}{x^{2}+6 x-40}$
(h) $\frac{x^{2}+10 x+24}{x^{2}-36}$
(i) $\frac{x^{2}+4 x-45}{x^{2}+10 x+9}$
(j) $\frac{x^{2}+11 x}{x^{2}-121}$
(k) $\frac{x^{2}-1}{x^{2}+x}$
(1) $\frac{x^{2}-15 x+44}{x^{2}-16}$
(m)

$$
\frac{x^{2}-x-6}{x^{2}-2 x-3}
$$

"Stewards Academy

Answer GRID Cross off each answer, then shade the remaining 5.

$\frac{x^{2} y}{x y}$	$4 x y \div y$	$\frac{4 x y^{2}}{2 x y}$	$9 y^{3} \div 3 y$	$\frac{8 x^{3}}{4 x}$	$2 x^{2}$	$\frac{3}{2} x^{2}$	$x^{2} y^{2}$	$3 y^{2}$	$4 y$
$5 x^{2} y^{3} \div x y^{2}$	$\frac{6 x^{3} y^{4}}{2 x^{2} y}$	$x^{5} y^{3} \div x^{3} y$	$\frac{4 x^{6} y^{3}}{4 x^{4} y^{3}}$	$4 x^{3} y^{5} \div x^{3} y$	$\frac{1}{2} x y^{3}$	x	$2 x^{2} y^{2}$	$\frac{4}{3} x^{3}$	$5 x y$
$\frac{3 x^{4} y}{6 x^{2}}$	$12 x^{5} y^{5} \div 2 x y^{2}$	$\frac{6 x^{6} y}{4 x^{4} y}$	$5 x^{3} y^{4} \div 2 x^{3} y^{2}$	$\frac{12 x^{4} y^{3}}{4 x^{4} y^{2}}$	$6 x^{4} y^{3}$	$3 x^{5} y^{2}$	$4 y^{4}$	$4 x$	$\frac{1}{2} x^{2} y$
$2 x^{3} y^{2} \div \frac{1}{2} x^{3} y$	$\frac{9 x^{6} y^{6}}{3 x y^{4}}$	$x^{3} y^{5} \div 2 x^{2} y^{2}$	$\frac{12 x^{4} y^{3}}{9 x y^{3}}$	$4 x^{3} y^{5} \div 2 x^{4} y^{2}$	$3 y$	$5 y^{4}$	$\frac{5}{2} y^{2}$	$3 x^{3} y$	

Decide if each card is TRUE or FALSE! Find the factor we can use to simplify the numerator \& denominator.

SStewards Academy

Question 1: Express the following as a single simplified fraction.
(a) $\frac{x}{3}+\frac{x}{5}$
(b) $\frac{c}{2}+\frac{c}{7}$
(c) $\frac{w}{3}+\frac{w}{9}$
(d)
$\frac{x}{2}-\frac{x}{3}$
(e)
$\frac{a}{5}-\frac{a}{9}$
(f)
$\frac{m}{2}-\frac{m}{8}$
(g)
(h) $\frac{3 x}{5}+\frac{x}{2}$
(i)

$$
\frac{3 c}{4}+\frac{5 c}{9}
$$

(j)

$$
\frac{m}{2}-\frac{2 m}{5}
$$

(k)

$$
\frac{3 n}{4}-\frac{5 n}{9}
$$

(1)

$$
\frac{7 h}{8}-\frac{5 h}{12}
$$

Question 2: Express the following as a single simplified fraction.
(a) $\frac{2}{x^{2}}+\frac{5}{x}$
(b) $\frac{5}{6 x}-\frac{1}{3 x}$
(c) $\frac{2}{f g}-\frac{4}{g}$
(d) $\frac{6}{a c}+\frac{2}{3}$
(e) $\frac{9}{w}+\frac{w x}{4}$
(f) $\frac{d}{3}+\frac{2}{d^{2}}$
(g) $\frac{m^{2}}{6}-\frac{9}{4 m}$
(h) $\frac{3}{4 b^{2}}-\frac{1}{2 b}$
(i) $\frac{a c}{5}+\frac{4}{c}$
(j) $\frac{x^{3}}{w}-\frac{2}{w x^{2}}$
(k) $\frac{2}{a b^{2}}-\frac{3}{b^{3}}$
(1) $\frac{x y}{5}-\frac{1}{x}$

Question 4: Express the following as a single simplified fraction.
(a) $\frac{2}{x+5}+\frac{3}{x+1}$
(b)
$\frac{2}{x+1}+\frac{1}{x+3}$
(c) $\frac{4}{x+5}-\frac{2}{x-1}$
(d)
$\frac{x+1}{x-2}+\frac{x+3}{x+5}$
(e)
$\frac{x+3}{2 x+1}-\frac{x-2}{x-1}^{\text {(f) }} \frac{x}{x+7}+\frac{2 x+5}{3 x+1}$
(g) $\frac{3}{x+1}+\frac{x+7}{(x+1)(x+2)}$
(h) $\frac{1-x}{(x-7)(x+1)}-\frac{2}{x-7}$

SStewards Academy

SPDT the MISTAKE!

Can you find the mistakes?
Correct them when you do!

Stewards Academy

Week 6 :

- LI: Apply rules of algebraic simplification to fractions using all four operations

Demonstration Videos:

Multiplying algebraic fractions Video - Corbettmaths
Dividing algebraic fractions Video - Corbettmaths

Tasks:

Question 1: Express the following as a single fraction.
(a) $\frac{2}{9} \times \frac{3}{h}$
(b) $\frac{3}{c} \times \frac{a}{4}$
(c) $\frac{w}{x} \times \frac{3}{a}$
(d) $\frac{3 a}{7} \times \frac{2 c}{9}$
(e) $\frac{a}{e} \times \frac{f}{b}$
(f) $\frac{e}{8} \times \frac{d}{8}$
(g) $\frac{x}{2} \times \frac{x}{5}$
(h) $\frac{7}{y} \times \frac{2}{y}$
(i) $\frac{3}{w} \times \frac{x}{4} \times \frac{y}{w}$
(j)

$$
\frac{2 x}{5} \times \frac{3 x}{7}
$$

(k) $\frac{x}{y} \times \frac{x}{y}$
(1)
$\frac{6 a}{7 c} \times \frac{5 a}{c}$

Question 2: Express the following as a single simplified fraction.
(a) $\frac{2 x}{y} \times \frac{y}{4}$
(b) $\frac{3 a}{c} \times \frac{5}{6}$
(c) $\frac{4}{5 a} \times \frac{5 w}{8}$
(d) $\frac{3 a}{7} \times \frac{2 c}{9}$
(e) $\frac{10 g}{w} \times \frac{w}{5}$
(f)
$\frac{4 x}{5 y} \times \frac{3 y}{8 x}$
(g)

$$
\frac{2 y}{3} \times \frac{2 y}{w y}
$$

(h) $\frac{6 x}{5 y} \times \frac{4 x}{3 y}$
(i)

$$
\frac{x^{2}}{a} \times \frac{a^{2}}{x^{2}}
$$

(j)

(k) $\frac{6 c}{w^{2}} \times \frac{15 w^{3}}{2 c^{2}}$
(1)

$$
\frac{2 a^{4}}{3 b^{3}} \times \frac{6 b^{2}}{5 a}
$$

(m)

$$
\frac{2 a^{3} b}{3} \times \frac{6}{a b^{2}}
$$

(n)
$\frac{x^{4} y^{4}}{z^{2}} \times \frac{z}{x^{6} y}$
(o)

$$
\frac{14 a^{2} b c^{3}}{9} \times \frac{6 b^{3}}{21 a^{3} c}
$$

Question 3: Express the following as a single fraction. Simplify if possible.
(a)

$$
\frac{x}{4} \times \frac{x-3}{2}
$$

(b)
$\frac{x+1}{15} \times \frac{5}{x}$
$\frac{x}{9} \times \frac{6}{x+7}$
(d)
$\frac{1}{x+3} \times \frac{2}{x+1}$
(e)
(f) $\frac{x+4}{x-4} \times \frac{x-2}{x+5}$
(g)
$\frac{x+1}{x-7} \times \frac{x-5}{x+1}$
(h)
(i) $\frac{4}{2 x-1} \times \frac{6 x-3}{x+7}$
(j)

$$
\frac{x+8}{15} \times \frac{10}{x^{3}+8 x^{2}}
$$

(k)

$$
\frac{4}{x-2} \times \frac{x^{2}-2 x}{8}
$$

(I)

$$
\frac{x^{2}+5 x+6}{4} \times \frac{2}{x+2}
$$

(m)
$\frac{x^{2}+2 x-8}{x^{2}+5 x+6} \times \frac{x+2}{x+4}$
(n)

$$
\frac{x^{2}+x-6}{x^{2}-25} \times \frac{x^{2}+10 x+25}{x^{2}-4}
$$

(o)

$$
\frac{3 x^{2}+8 x-3}{25} \times \frac{30}{6 x^{2}+13 x-5}
$$

Stewards Academy

Question 1: Express the following as a single simplified fraction.
(a) $\frac{x}{2} \div \frac{2}{3}$
(b) $\frac{a}{c} \div \frac{d}{5}$
(c) $\frac{3}{w} \div \frac{2}{a}$
(d) $\frac{c}{4} \div \frac{3}{c}$
(e) $\frac{3 a}{4} \div \frac{6 c}{7}$
(f) $\frac{4 x}{9 y} \div \frac{6 x}{7}$
(g) $\frac{10 x}{3 y} \div \frac{15 x}{y}$
(h) $\frac{a b}{3} \div \frac{2 a}{b}$
(i) $\frac{4 f g}{h} \div \frac{f}{2 h}$

Question 2: Express the following as a single fraction. Simplify if possible.
(a) $\frac{x-4}{8} \div \frac{3 x-12}{2}$
(b) $\frac{x+3}{x+2} \div \frac{x+1}{x+2}$
(c) $\frac{x+1}{2} \div \frac{2 x+2}{3}$
(d) $\frac{3 x+9}{2} \div \frac{x+3}{4}$
(e) $\frac{4}{x-2} \div \frac{3}{x^{2}-2 x}$
(f) $\frac{11}{4 x^{2}+2 x} \div \frac{3}{2 x+1}$
(g) $\frac{x+3}{x+1} \div \frac{x}{(x+1)^{2}}$
(h) $\frac{x^{2}}{7} \div \frac{6 x^{3}+8 x^{2}}{x^{2}-7 x}$
(i) $\frac{x}{x+6} \div \frac{x+6}{x^{2}}$
(j)

$$
\frac{x^{2}+7 x+10}{2} \div \frac{x^{2}+4 x-5}{4}
$$

(k)

$$
\frac{14}{x^{2}-5 x+6} \div \frac{7}{x^{2}+3 x-10}
$$

(l) $\frac{x+4}{x+5} \div \frac{3 x+12}{x^{2}-25}$
(m) $\frac{x^{3}-x}{x+2} \div \frac{x^{2}-x}{x^{2}-5 x-14}$

LINK Left \& Right

"Stewards Academy

Stewards Academy

Questions	Question Title
1	Adding column vectors
2	Standard form, cube numbers
3	Changing the subject of a formula, subject in denominator
4	Finding bearings by addition
5	Relative frequency, reverse decimal problems
6	Integer solutions to inequalities
$7 \mathrm{a} / \mathrm{b}$	Error intervals
8 a	Properties of 2D shapes
8 b	Congruence
9	Fractions of amounts
9 b	Probability of a single event not happening
10a	Angles on parallel lines, solving equations
10 b	Solving equations, angles on straight lines
11	Ratio problems
12	Exponential problems
13	Mean problem solving
14	Identifying proportional relationships
15a/b	Interpreting real-life graphs
16	Repeated percentage decrease
17	Speed, other compound units
18	Exponential decay graphs
19	Circle theorems, angle facts solving equations
20	Upper and lower bound calculations
21	Solving quadratic inequalities
22	Finding the nth term of a quadratic sequence
23	Finding the coordinates of turning point
24	Instantaneous rate of change
25a	3D Pythagoras' theorem
25b	3D trigonometry
26	Area of compound shapes, solving quadratic equations
27	Proof

