Maths Spring 1

Year 9

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 9 Overview
Page 4: Knowledge Organiser
Page 5-11: Week 1 - Constructing bisectors
Page 12-17: Week 2 - Congruency
Page 18-23: Week 3 - Pythagoras' Theorem
Page 24-30: Week 4 - Interior angles of a polygon
Page 31-35-: Week 5 - Exterior angles of a polygon
Page 36-42: Week 6 - Angle construction
Page 44: Assessment Ladder

"Stewards Academy

© Stewards Academy

Week 1:

- LI: : To construct a perpendicular bisector of a line segment

To construct a perpendicular to a given line from and at a given point To bisect a given angle

Demonstration Videos:

Perpendicular bisector - https://www.youtube.com/watch?v=1beKcgU9ogE
Perpendicular from point - https://www.youtube.com/watch?v=XjluAXtpbPI
Bisect angle - https://www.youtube.com/watch?v=fBGOshZk94U

Constructing Perpendicular Bisector

Tasks:

Draw the perpendicular bisectors of these lines

Example:

Using Compasses Effectively

1. Set the point of your pair of compasses on the dot and open them to the correct distance for the dotted line.
2. Use your compasses to trace over the dots.
3. Use your ruler to measure the setting of your compasses and write it next to the diagram.

Make up your own design for
someone else to copy

S Stewards Academy

Exam Questions

1. Construct the perpendicular bisector of $A B$.

Q2. A map of an island is shown on the grid.

Treasure is buried on the island.
The treasure is the same distance from A as it is from B.

Construct a line on the map to show all the places where the treasure could be.

Construct a perpendicular line through the point.

Example:

Example

Exam Question

Use ruler and a pair of compasses to construct the shortest possible line from the point W (marked with a cross) to the line XY.

You must show your construction lines.

$$
\mathrm{X} \longrightarrow \mathrm{Y}
$$

W
(S Stewards Academy

Bisecting Angles

Example:

S Stewards Academy

Construct the angle bisector of $\angle A B C$ for each of the following shapes..

Q10 Draw a near vertical line of length 6 cm . Using a compass and ruler only, construct its perpendicular bisector.
Q11 Draw a line 8cm in length. Using a compass and ruler only, construct its perpendicular bisector.

Q12 Using a protractor, draw an angle of 64°. Using a compass and ruler only, construct its angle bisector. Check your answer by measuring the two angles formed.

Q13 Using a protractor, draw an angle of 120°. Using a compass and ruler only, construct its angle bisector. Check your answer by measuring the two angles formed.

Q14 Draw a triangle and construct the perpendicular bisector of each side. Draw the smallest possible circle that does not enter the triangle.

Q15 Draw another triangle and construct the angle bisector of each vertex. Draw the largest possible circle that does not exit the triangle.

Stewards Academy

Week 2:

- LI: To determine when two shapes are congruent

To understand and use the criteria for congruent triangles
To give detailed reasons to justify congruence in increasingly complex situations

Demonstration Videos:

Congruency - https://classroom.thenational.academy/lessons/congruence-
75gk0d?activity=video\&step=1
Congruent Triangles - https://www.mathsgenie.co.uk/congruence.html

Tasks:

1) Identify 2 pairs of congruent shapes from the options below.

2) Draw 2 more shapes that will be congruent to F.

3) The grid shows eight shapes, A, B, C, D, E, F, G and H

Which of the following shapes is not being split into 2 congruent halves?
A)

SStewards Academy

Properties of congruence

Quadrilateral $A B C D$ and quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are congruent.
This can be written as $A B C D \equiv A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, where the symbol ' \equiv ' means 'congruent'.
The angle marked in the diagram below can be written as $A \hat{B} C$ or $\angle A B C$.
Complete the statements below:
A and A^{\prime} are corresponding \mathbf{v}.
$A B$ and $A^{\prime} B^{\prime}$ are corresponding s

$\angle A B C$ and $\angle A^{\prime} B^{\prime} C^{\prime}$ are corresponding a

The two pentagons below are congruent.

a) Name two pairs of corresponding vertices
\qquad
b) Name two pairs of corresponding sides
\qquad
c) Name two pairs of corresponding angles
\qquad

Given that $M N O P \equiv W X Y Z$, complete the following:

a) $Z Y=P O=$ \qquad cm
d) $W X=$ \qquad $=$ \qquad cm
b) $\mathrm{WZ}=$ \qquad $=$ \qquad cm
e) $X \hat{Y} Z=$ \qquad $=$ \qquad。
c) $X Y=$ \qquad $=$ \qquad cm

True or False

Use the diagrams to help you decide if the following statements are true or false:
a) The two quadrilaterals below are congruent.

b) The two regular pentagons below are congruent.

True/False

"Stewards Academy

Conditions to prove Congruency.

2 angles and any corresponding side.

An angle between two sides.
SAS: Side, Angle, Side
RHS: Right angle, Hypotenuse, Side

§Stewards Academy

Find pairs of congruent triangles and state what condition can be used to prove their congruency.

His Stewards Academy

1. These two triangles are congruent:

Not drawn to scale.
a) What is the size of $\angle Z X Y$? \qquad
b) What is the length of XY? \qquad
2. Which of the triangles below are congruent to the $\triangle A B C$, and why?

In each diagram below, identify a pair of congruent triangles and give reasons for your answers.
a)
b)

c)

Stewards Academy

Week 3:

- LI: To prove and use Pythagoras' theorem to find missing sides in right-angled triangles

Demonstration Videos:

Finding hypotenuse - https://www.youtube.com/watch?v=vPLuCCwcZUA
Finding shorter side - https://www.youtube.com/watch?v=vPLuCCwcZUA
Proving theorem - https://www.youtube.com/watch?v=uaj0XcLtN5c

Tasks:

Concept corner

If we use the letters a, b and c for the sides of a right-angled triangle, then Pythagoras' Theorem states that

$$
a^{2}+b^{2}=c^{2}
$$

where c is the length of the hypotenuse.

1. Mark the hypotenuse on each of the following right angled triangles:

Y

Example

Calculate the length of the hypotenuse of a triangle in which the other two sides are 8 m and 5 m .

Solution

$$
\begin{aligned}
& a^{2}=8^{2}+5^{2} \\
& a^{2}=64+25 \\
& a^{2}=89 \\
& a=\sqrt{89} \text { metres }
\end{aligned}
$$

1. Calculate the length of the hypotenuse of each of these triangles:

©Stewards Academy

Stew Stewards Academy

Find the length of each side (\mathbf{K} to \mathbf{P}) $a^{2}+b^{2}=c^{2}$
Give your answers to 1 dp .

HS Stewards Academy

Pythagoras' Theorem

Start where you feel is appropriate for you and continue to work through the questions.

1. Calculate the length of the longest side in these questions. Some of the working out has been started for you. Give your answers correct to 1 decimal place.
a)
b)
c)
d)

2.5 mm

$3^{2}+4^{2}=25$
$8^{2}+6^{2}=$
$\sqrt{25}=$
$\sqrt{ }=$
\qquad ${ }^{2}+ـ^{2}=$
2. Calculate the length of the hypotenuse in these questions. Give your answers correct to 1 decimal place.
a)
b)
c)
d)
7 cm

4 m
(11cm 5 cm
3. Look carefully at whether you need to calculate the hypotenuse or one of the other sides.

Give your answers correct to 1 decimal place.
a)

b)
(9 cm
c)

d)

f)
h)

$t \mathrm{~cm}$
g)

4. A man walks 10 km north then 24 km east. How far is he from his starting position? (Draw a diagram to help you).
5. A rectangular door measures 2.5 m by 1 m . How long is the diagonal of the door? Give your answer to 1 decimal place.
6. To the right is an isosceles triangle. Use Pythagoras' Theorem to calculate the height of the triangle. Give your answer to 1 decimal place. (Hint: you will need to cut the triangle in half to get a right-angled triangle first).

7. A cylindrical container has diameter 8 cm and height 15 cm . My pencil measures 18 cm . Can the pencil fit completely inside the container?

"Stewards Academy

Pythagoras Pile-Up!

Can you find x ?

Start at the bottom and label each length you can find.

Try to keep as much accuracy as possible!

S Stewards Academy

Pythagoras' Theorem

Literacy

Hypotenuse: the longest side of a right-angled triangle, opposite the right angle.

Research

What is a Pythagorean Triple? Find three examples.

Skills

1. Find x.

2. Find x.

3. Is this triangle right-angled?

Memory

Learn the formula:

$$
a^{2}+b^{2}=c^{2}
$$

where c is the hypotenuse

Stretch

1. Find the vertical height of this equilateral triangle.

2. A ladder of length 4 m leans against the wall of a house. The foot of the ladder is 2 m from the wall. Will the ladder reach a window 3.5 m high?

These triangles aren't drawn to scale!

Stewards Academy

Week 4:

- LI: To prove that the sum of the angles in a triangle is 180° To find the formula for sum of the angles of any polygon

Demonstration Videos:

Proof of angles in a triangle - https://www.youtube.com/watch?v=RDNEMvEwrYI
Interior angles of polygon - https://classroom.thenational.academy/lessons/finding-the-sum-of-interior-angles-in-a-polygon-ctk30e?activity=video\&step=1
Number of sides when given angles - https://classroom.thenational.academy/lessons/find-the-number-of-sides-when-given-the-sum-of-interior-angles-68w3jc?activity=video\&step=1

Tasks:

Proving angles in a triangle sum 180°

1) Cut the corners off the triangle.
2) Rearrange the corners together on

STRAIGHT LINE

DICIT Puzzle

How many ways can you complete these three angles?

\$Stewards Academy

ANGLE RULE: Interior angles in a triangle total 180°

Exercise 1: Find the missing angle

Exercise 2: Find the value of x.

Exercise 3: Which of these sets of angles could make a triangle?
a) $120^{\circ}, 40^{\circ}, 20^{\circ}$
b) $50^{\circ}, 60^{\circ}, 70^{\circ}$
c) $90^{\circ}, 80^{\circ}, 15^{\circ}$
d) $170^{\circ}, 4^{\circ}, 6^{\circ}$
e) $62^{\circ}, 77^{\circ}, 41^{\circ}$
f) $104^{\circ}, 62^{\circ}, 12^{\circ}$
g) $39^{\circ}, 88^{\circ}, 52^{\circ}$
h) $14^{\circ}, 100^{\circ}, 20^{\circ}, 46^{\circ}$

Exercise 4: What additional angles would make these into an ISOSCELES triangle?

1) $80^{\circ}, 80^{\circ}$, \qquad 2) $45^{\circ}, 45^{\circ}$,
2) $65^{\circ}, 65^{\circ}$, \qquad 4) $80^{\circ}, 50^{\circ}$, \qquad
3) 42°, \qquad
4) 88°, \qquad
\qquad
5) 100°, \qquad -
6) 12°, \qquad
\qquad

©Stewards Academy

S Stewards Academy

Finding the Sum of Interior Angles in a Polygon

1. Complete the table.

Shape	Number of sides	Number of triangles	Sum of Interior angles
Quadrilateral	4	2	360°
Pentagon			
Nonagon		8	
	6	6	
			1800°
	20		

2. Nick is working out the sum of interior angles of a 16 sided shape.

"I've split the shape into 16 triangles" $16 \times 180=2880$

The interior angles add up to 2880°.

Nick is wrong.
What mistake has he made?

3. Find the angle labelled x.

4. A polygon has n sides
a) Write an expression, in terms of n, to represent the number of triangles inside the polygon.
b) Write an expression, in terms of n, to represent the sum of interior angles of the polygon.
5. Calculate the size of each interior angle in a regular hexagon.

SStewards Academy

Regular Pentagon
Total Interior Angles
$=3 \times 180^{\circ}=540^{\circ}$

Irregular Octagon
Total Interior Angles $=6 \times 180^{\circ}=1080^{\circ}$

The formula for any regular or irregular polygon is:
Sum of Interior Angles $=(n-2) \times 180$

1. Calculate the sum of the interior angles of a 12 -sided polygon.
2. The sum of the interior angles of a polygon is 3060°. How many sides does it have?
3. Is it possible to draw a polygon whose total interior angles add to 4230 ? Explain your answer.
4. Find the size of each interior angle of a regular polygon with 36 sides.
5. Find the number of sides of a regular polygon if each interior angle of the polygon is 140°.

Stewards Academy

Angles in Polygons Challenge

This image has been created by layering lots of regular polygons on top of each other. Find ALL the angles contained within the diagram (be careful, some lines look straight where one polygon ends and another begins). There are some irregular polygons created by the layering so you may need to look out for these.

If you manage all the angles within the polygons, what about those that are in the white polygons?

Finding the Number of Sides of a Polygon

1. Calculate the number of sides of the polygons given the sum of interior angles.
a) 1080°
b) 1800°
c) 720°
d) 3960°
e) 15840°
6840°
2. Kris says "I know that there are 540° in a pentagon, so a 50 sided shape must have 5400° ". Is Kris right? Explain your answer.
3. Calculate the size of each interior angle of a regular polygon, given the sum of interior angles.
a) 900°
b) 1260°
c) 2340°
d) 3240°
f) 4. Calculate the exterior angle of a regular polygon, given the sum of interior angles.
a) 540°
b) 1440°
c) 2520°
d) 6120°
4. The sum of interior angles of a polygon is 720°. How many sides does the polygon have? *
5. The sum of interior angles of a polygon is 2880°. How many sides does the polygon have? *
6. The sum of interior angles of a regular polygon is 3960°. What is the size of each interior angle of the regular polygon? *

The sum of the interior angles of a polygon is 1980°

How many sides does this polygon have?

Stewards Academy

Week 5:

- LII: To understand and use the sum of the exterior angles of a polygon To understand the difference between regular and irregular polygons To solve problems involving the angles/number of sides in a regular polygon

Demonstration Videos and Examples:

Finding exterior angles - https://classroom.thenational.academy/lessons/find-missing-exterior-angles-of-polygons-64t38r?step=1\&activity=video
Interior and exterior - https://www.mathsgenie.co.uk/angles-polygons.html

Tasks:

Find Missing Exterior Angles of Polygons

1. Work out the size of each exterior angle of the polygons.

What is the sum of the exterior angles in part a and b
2. What is the sum of the exterior angles of any polygon?
3. Find the missing angles.

c)
b)

d)

Find Missing Exterior Angles of Polygons

4. Work out the exterior angles of regular polygons with the given number of sides.

Number of sides	Size of the exterior angle
3	
4	
5	
6	
10	
36	

5. A regular polygon has n sides.

Write an expression to represent the size of each exterior angle.
6. A regular polygon has an exterior angle of 45°.

How many sides does the regular polygon have?

§Stewards Academy

ANGLE RULE: Angles on a straight line total 180°

DICIT Puzzle
Now many ways can you complete these two angles?

Angles on Straight Lines
"Angles on a straight line total \qquad .$"$
Calculate the missing angles. All the answers are at the bottom.

$\mathbf{m}=$
$\mathbf{n}=$

112°	47°	101°	40°	41°	112°	15°	155°	49°	60°
62°	30°	35°	71°	37°	88°	51°	46°	85°	135°

From the answers you have not used...
which three angles can you put together to form a straight line?

SStewards Academy

Concept corner

The following diagram shows a regular pentagon:

In a regular polygon the sides are the same length and the interior angles are all the same size.

For any regular polygon: interior angle + exterior angle $=180^{\circ}$

1) Find the size of one exterior angles of these regular polygons.

b.

d.

2) Find the value of x for each irregular shape.
e.

g.
70

h. What size is one exterior angle of

> a regular icosagon?
(An icosagon has 20 sides)
3. Complete the table for regular polygons.

Remember! Interior angle + Exterior angle $=180^{\circ}$

Shape	Sides	Exterior Angle	Interior Angle
	3		60°
	4		
	5		
	6		
Heptagon	7		
	8		
Nonagon	9		
	10		

4. These are exterior angles of regular polygons. How many sides does each polygon have?

For each of the shapes
What is the size of the interior angle? What is the sum of interior angles?

Stewards Academy

The $£ 1$ coin is a regular dodecagon, it has 12 sides. Work out the exact size of the interior angle of a regular dodecagon.

8. For each of the following polygons (not drawn to scale), work out the value of x :
b)
a)

c)

9. The interior angles in a quadrilateral are $x, 2 x, 3 x$ and $3 x$.

Work out the value of x.
What are the values of each of the angles in degrees?

Exam Questions

Q1.
The sum of the angles in any quadrilateral is 360°
For example, in a rectangle $4 \times 90^{\circ}=360^{\circ}$
Zak writes,
$5 \times 90^{\circ}=450^{\circ}$ so the sum of the angles in any pentagon must be 450°
Is he correct?

Tick a box.

Show working to support your answer.
(Total 2 marks)

Q2.
A regular pentagon is drawn inside a regular octagon as shown.
Not drawn accurately

Calculate the size of angle p.
You must show your working.

Week 6:

- LI: To construct a 60° angle

$$
\text { To construct a } 45^{\circ} \text { angle }
$$

To construct a SSS triangle

Demonstration Videos:

Constructing 60 degrees - https://www.youtube.com/watch?v=hMcTg4ZfOm8 Construct all angles - https://www.youtube.com/watch?v=518bltVe IE\&t=46s Constructing SSS triangle - https://www.youtube.com/watch?v=o13HKzmYSUA

Tasks:

Construct an angle of 60°	Construct an angle of 30°	Construct an angle of 45°
1. Draw base line $A B$ of any length.	1. Draw base line $A B$ of any length.	1. Draw base line $A B$ of any length.
2. Place compass at A, set to distance $A B$ and draw arc.	2. Construct an angle of 60° at A .	2. Mark a point P anywhere on $A B$.
3. Place compass at B, with same	3. Bisect angle BAC.	3. Construct the perpendicular to P .
distance set and draw an arc to intersect first one.	4. Angle $B A D=30^{\circ}$	4. Bisect angle BPD.
4. Draw straight line from A through point of intersection. Angle $B A C=60^{\circ}$.		5. Angle $\mathrm{BPE}=45^{\circ}$.

Construct a 60° angle, a 30° angle and a 45° angle below using only a compass and a straight edge

Stewards Academy

1. Construct the following angles using a ruler and compass:
a. 30°
b. 45°
c. 135°
d. 225°
e. 120°
f. 150°
g. 210°
h. 245°
2. Use a ruler and compass to construct the triangle $P Q R$ with $P Q=8 \mathrm{~cm}, P R=7.5 \mathrm{~cm}$ and $\angle Q P R=60^{\circ}$.
3. Use a ruler and compass to construct a square $A B C D$ of side 6 cm

4a. Use a ruler and compass to construct a triangle $P Q R$ with $P Q=7 \mathrm{~cm}, \angle Q P R=30^{\circ}$ and $\angle P Q R=60^{\circ}$
b. Calculate the size of $\angle P R Q$ and check your answer with a protractor.
c. Measure $P R$ and $Q R$ to the nearest millimetre. Hence find the perimeter of triangle $P Q R$ in millimetres.

5a. Use a ruler and compass to construct a triangle $A B C$ with $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$.
b. Measure the size of $\angle B A C$ and hence calculate the size of $\angle A C B$
c. Measure $A C$ to the nearest millimetre. Hence find the perimeter of triangle $A B C$ in millimetres

6a. Use a ruler and compass to construct a trapezium $P Q R S$ with $P Q=8 \mathrm{~cm}, P S=7 \mathrm{~cm}, Q R=7 \mathrm{~cm}$, $\angle Q P S=60^{\circ}$ and $\angle P Q R=60^{\circ}$
b. Measure $R S$ to the nearest millimetre. Hence find the perimeter of the trapezium $P Q R S$.

7a. Use a ruler and compass to construct a triangle $P Q R$ with $P Q=6 \mathrm{~cm}, \angle Q P R=30^{\circ}$ and $\angle P Q R=120^{\circ}$.
b. Calculate the size of $\angle P R Q$ and check your answer with a protractor
c. Measure $P R$ and $Q R$ to the nearest millimetre. Hence find the perimeter of triangle $P Q R$ in millimetres

8a. Use a ruler and compass to construct a trapezium $D E F G$ with $D E=6.5 \mathrm{~cm}, \angle D E F=90^{\circ}$, $E F=55 \mathrm{~cm}, \angle E F G=90^{\circ}$ and $\angle E D G=60^{\circ}$.
b. Calculate the size of $\angle D G F$ and check your answer with a protractor
c. Calculate the sum of the interior angles of the trapezium
d. Measure $D G$ and $F G$ to the nearest millimetre. Hence find the perimeter of trapezium $D E F G$ in millimetres.

S Stewards Academy

Constructing a triangle

given three sides (SSS)
Constructing a Triangle from 3 Sides.
Draw a triangle with sides $6 \mathrm{~cm}, 4 \mathrm{~cm}$ and 3 cm .
Step 1 - Draw a 6 cm line.

Constructing a Triangle from 3 Sides.
Draw a triangle with sides $6 \mathrm{~cm}, 4 \mathrm{~cm}$ and 3 cm . Step 2 - Move the compasses to the end of the line and set them to 4 cm .

Constructing a Triangle from 3 Sides.
Draw a triangle with sides $6 \mathrm{~cm}, 4 \mathrm{~cm}$ and 3 cm .
Step 3 - Set the compasses
to 3 cm and move them to the other end.

Constructing a Triangle from 3 Sides.
Draw a triangle with sides $6 \mathrm{~cm}, 4 \mathrm{~cm}$ and 3 cm .
Step 4 - Make another arc.

Constructing a Triangle from 3 Sides.
Draw a triangle with sides $6 \mathrm{~cm}, 4 \mathrm{~cm}$ and 3 cm .
Step 5 - Join the ends of the line to the arc.

Using the steps above, construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$ below.

Side Side Side Triangles

Construct (draw) accurate triangles given the lengths of all three sides - Side-Side-Side.
1)

2)

4)

5)

6)

7)

8)

"Stewards Academy

S Stewards Academy

Congruent Triangles

Which of these triangles can you construct a congruent (identical) copy of?

Why can't you make a congruent copy of the others?
What is the minimum amount of information you need to make a congruent copy?

Not drawn accurately.

Use all your knowledge of constructing triangles (SSS, SAS, ASA) to accurately construct this picture.

Mathe Assetment Ladder
Tg Unit Spring 1

	Unit 3－Constructions and loci，Congruence and Similarity，Pythagopri4 and Angles in polvgons	
Band：	Knowledge and Understanding	Skills
$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{3} \\ & \frac{3}{9} \end{aligned}$	Understands how to find rnisbing sides of compound shapers 14 Can use mathematical explanations to prove a statement is correct or incorrect 7^{*}	Calculates the shorter side of a right ander triangle uting the hypotenuse and another side and uses this information to solve a perimeter problem 6 Use Pythagoras＂thearem to prove whether a triangle is right angled or nat 7 Uses the rule for euterior angles in polvgons to work out the number of sides when glven the interior angle 10 Uses Pythagoras theorem to find miesing sides in compound shapes 14
$\frac{3}{7}$	Howes how to find the ambunt Of degrees in a polygon E＊ Understands the rule for finding Exterior angles in regular polygons 9^{*}	Calculates the hypotenuse of a fighf angled triangle given the two shorter sides 5 b Calculates the exterior angle of a regular octagon Uses a ruler and a pair of compasses to construct a perpendicular through a point 12 Calculates the interior angle of a regular pentagon 13a Uses angle fact on a straight line and in a triangle fo solve problems 13b
亳	Understands how to describe congruency and provide eqplanations 3b＂ Understands how to round an answer ta three significant figures 5b	Identifies congruent triangles 3 B Recogriber vertically opposite angles 4 Calculates the area of a triangle 5 S Explain why the interior angles of a pentagon sum to 540 degrees Sa Uses congruent triangles to find a missing side 11者 Uses congruent triangles to find a missing angle 11b
$\frac{\text { 답 }}{\text { ¢ }}$	Understands the properties of eongruent triangles－ ASMSAS 4＊ Understands how to find the perimeter of shapes 6^{*}	Uses a ruler and pair of compases to construct an angle bisector 1b Uses a ruler and a pair of compasses to construct a perpendicular bisector 2 Uses the properties of congruent triangles to prove why two triangles are congruent 4b Uses the sum of the intemal angles in a pentagon to find missing angles gb
雨	Can use mathematical equipment effectively $\mathbf{1}^{*}$	Measures an angle using a protractor 1a Itfentifies the name of a polven given the number of sides $9 / 10^{+}$

