Maths Spring 1

Year 8

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents
Page 3: Big Picture - Year 8 Overview
Page 4: Knowledge Organiser
Page 5-9: Week 1 - Angle Basics
Page 10-15: Week 2 - Angles in Parallel Lines
Page 16-20: Week 3 - Angles in Polygons
Page 21-26: Week 4 - Constructions
Page 27-33: Week 5 - Conversions
Page 34-39: Week 6 - Area
Page 40: Assessment Ladder

SStewards Academy

SStewards Academy

Stewards Academy

Week 1:

- Ll: To apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles

Demonstration Videos:

https://corbettmaths.com/2012/08/10/angles-in-a-full-circle/
https://corbettmaths.com/2013/12/19/angles-straight-line-video-35/
https://corbettmaths.com/2013/03/16/vertically-opposite-angles/

Tasks:

ANGLE

ANGLES AROUND A POINT
NO PROTRACTOR
A1 Find the value x A2 Find the value x Find the value x

Angles (1)

Find x

5

Find x
1)

2)

3)

4)

ANSWERS

Find x
1)

2)

3)

4)

SStewards Academy

64°	195°	150°	295°	251°
194°	241°	27°	132°	74°
81°	124	41°	137°	214°
143°	77°	140°	48°	325°
129°	319°	31°	228°	32°

$223^{\circ}+?=360^{\circ}$
$217^{\circ}+?=360^{\circ}$
$166^{\circ}+?=360^{\circ}$
$231^{\circ}+?=360^{\circ}$
$333^{\circ}+?=360^{\circ}$
$35^{\circ}+?=360^{\circ}$
$283^{\circ}+?=360^{\circ}$
$228^{\circ}+?=360^{\circ}$
$165^{\circ}+?=360^{\circ}$
$132^{\circ}+?=360^{\circ}$
$279^{\circ}+?=360^{\circ}$
$65^{\circ}+?=360^{\circ}$
$210^{\circ}+?=360^{\circ}$
$328^{\circ}+?=360^{\circ}$
$146^{\circ}+?=360^{\circ}$
$41^{\circ}+?=360^{\circ}$
$312^{\circ}+$? $=360^{\circ}$
$296^{\circ}+$? $=360^{\circ}$
$329^{\circ}+$? $=360^{\circ}$
$109^{\circ}+$? $=360^{\circ}$

TOTAL

DICIT Puzzle

How many ways can you complete these two angles?

Use any digits
Use digits only once

Angle $\mathbf{A}=$

Angle $\mathbf{B}=$

What are the largest \& smallest angles you can make?

ANGLE
ANGLES WHICH FORM A STRAIGHT LINE
A1 Find the value x A2 Find the value x Find the value x And

Ste, Stewards Academy

Name

165°	25°	160°	125°	80°
150°	40°	90°	85°	100°
140°	70°	115°	55°	75°
35°	30°	95°	55°	110°
145°	45°	35°	20°	155°

65°, ?
15°, ?
105°, ?
145°, ?
85°, ?

(a) Calculate angle x .

(a) Work out the size of the angle marked x .
(b) Give a reason for your answer.
(b) Calculate angle w.

S Stewards Academy

ANGLE RULE: Vertically opposite angles are equal.
Calculate the value of each angle.

Annie is working out the size of angle f.

Do you agree with Annie? \qquad
Explain your answer.
\qquad
\qquad

Angle f is one quarter of the size of angle g.
Angle f is 28°.

Are angles x and y vertically opposite? \qquad
Explain your answer.

Stewards Academy

The diagram shows four angles formed by two straight lines.

a) Measure the sizes of the angles.
$a=$ \square
\square
\square
\square
b) What is the total of angles a and b ? \square
d) Angles b and d are also vertically opposite angles. What do you notice about the sizes of angles b and d ?
e) Complete the sentence.

Vertically opposite angles \qquad Explain why.

Do any other pairs of angles have this same total?
c) Angles a and c are vertically opposite angles.

What do you notice about the sizes of angles a and c ?

Work out the unknown angles.
a)

c)

b)

d)

Sts Stewards Academy

Week 2:

- LI: To understand and use the relationship between parallel lines and alternate and corresponding angles

Demonstration Videos:

https://corbettmaths.com/2013/04/04/parallel-lines-angles/

Tasks:

Q3

§Stewards Academy

Q3
Q4

"Stewards Academy

Angles Around Parallel Lines: Measure and label each angle. What relationships can you find between pairs of angles?

Parallel Lines
By measuring corresponding angles, Find - and label - pairs of parallel lines.
$\approx 119^{\circ}$
$\approx 119^{\circ}$

Work out x

Work out x

Question 1: Are the lines AB and CD parallel? Explain your answer.

Question 2: Find the missing angle.
Give reasons for your answer.

Question 3: Find x

Question 4: Find x

$A B$ is parallel to $C D$.
(a) Work out the size of the angle marked x .

Give a reason for your answer.
\qquad
\qquad
(b) Work out the size of the angle marked y.

Stewards Academy

Across

1.

3.

5.

7.

9.

11.

12.

14.

16.

20.

25.

17.

22.

27.
23.

28.

(\$ Stewards Academy

Down

1.

2.

3.

10.

4.

13.

14.

24.

15.
26.
18.

21.

8.

Find x

is
4)

放
Find x
2) $\xrightarrow[\rightarrow]{\text { 2 }}$
3) ${ }^{45 \mathrm{D}} \longrightarrow$ 3)

3)
1)

Find x
2)

4)

Stewards Academy

Week 3:

- LII: To derive and use the sum of angles in a triangle and use it to deduce the angle sum in any polygon, and to derive properties of regular polygons

Demonstration Videos:

https://corbettmaths.com/2013/03/17/angles-in-quadrilaterals/ https://corbettmaths.com/2012/08/10/angles-in-a-triangle/ https://corbettmaths.com/2012/08/10/types-of-angle/

Tasks:

Name

35°	80°	110°	40°	75°
20°	140°	50°	65°	5°
35°	125°	45°	100°	105°
10°	130°	155°	145°	50°
20°	55°	60°	115°	50°

$25^{\circ}, 30^{\circ}$, ?
$25^{\circ}, 25^{\circ}$, ?
$15^{\circ}, 10^{\circ}$, ?
$65^{\circ}, 15^{\circ}$, ?
$35^{\circ}, 95^{\circ}$, ?

TOTAL

Find the missing angles in these Triangles. SNill 1

59°	13°	75°	26°	121°
11°	22°	24°	96°	67°
23°	17°	53°	60°	24°
80°	122°	33°	30°	54°
34°	103°	34°	35°	80°

$129^{\circ}, 17^{\circ}$, ?
$42^{\circ}, 58^{\circ}$, ?
$26^{\circ}, 94^{\circ}$, ?
$132^{\circ}, 18^{\circ}$, ?
$36^{\circ}, 111^{\circ}$, ?
$91^{\circ}, 66^{\circ}$, ?
$46^{\circ}, 59^{\circ}$, ?
$112^{\circ}, 14^{\circ}$, ?
$16^{\circ}, 42^{\circ}$, ?
$24^{\circ}, 53^{\circ}$, ?
$142^{\circ}, 14^{\circ}$, ?
$106^{\circ}, 63^{\circ}$, ?
$115^{\circ}, 43^{\circ}$, ?
$50^{\circ}, 34^{\circ}$, ?
$64^{\circ}, 57^{\circ}$, ?
$78^{\circ}, 35^{\circ}$, ?
$129^{\circ}, 34^{\circ}$, ?
$37^{\circ}, 63^{\circ}$, ?
$26^{\circ}, 33^{\circ}$, ?

TOTAL \square

S Stewards Academy

Question 1: Find the size of each missing angle.
(a)

(b)

(d)

(e)

(g)

(h)

(c)

(f)

(i)

Question 2: Shown below are three trapezia.
Find the size of each missing angle.
(a)

(b)

Question 3: Shown below are three parallelograms.
Find the size of each missing angle.
(a)

(b)

(c)

(c)

Question 4: Shown below are three rhombuses.
Find the size of each missing angle.
(a)

(b)

Question 5: Shown below are three kites.
Find the size of each missing angle.
(a)

(b)

(c)

\sum

This is a Tangram Puzzle, Can you work out all of the angles made in the puzzle without measuring them?

$a=$	$h=$	$o=$
$b=$	$i=$	$p=$
$c=$	$j=$	$q=$
$d=$	$k=$	$r=$
$e=$	$l=$	$s=$
$f=$	$m=$	$t=$
$g=$	$n=$	$u=$

$\mathrm{v}=\quad \mathrm{w}=$

SStewards Academy

Find the size of each angle marked with a letter and give reasons for your answers.
Diagrams not drawn accurately

Size of angle e: \qquad Reason: \qquad

Size of angle f: \qquad Reason: \qquad

Size of angle g: \qquad Reason: \qquad

Size of angle h : \qquad Reason: \qquad

The image shows three straight lines that intersect at a point. Tick true or false for each of the statements below.

	True	False
Angle \mathbf{f} is vertically opposite angle \mathbf{d}		
$\mathbf{d}+\mathbf{b}+\mathbf{c}=180^{\circ}$		
$\mathbf{a}+\mathbf{f}=180^{\circ}$		
$\mathbf{c}+\mathbf{b}=\mathbf{f}+\mathbf{e}$		

"Stewards Academy
\sum
Find the missing angles

Find the missing angles
$\$$

Stewards Academy

Week 4:

- LI: To derive and illustrate properties of triangles, quadrilaterals, circles, and other plane figures using appropriate language and technologies

Demonstration Videos:

https://corbettmaths.com/2013/03/28/constructing-sas-triangles/ https://corbettmaths.com/2013/03/29/constructing-asa-triangles/ https://corbettmaths.com/2013/03/26/constructing-sss-triangles/ https://corbettmaths.com/2013/03/26/angle-bisector/

Tasks:

Side Angle Side triangles (there is an angle between two sides)

1. Using a ruler, draw out a line that is the length of one of the sides
2. Measure the given angle from the end of the line you have just drawn and draw a long line to mark your angle

3. Using a ruler, measure along the line for the given length
4. Connect the other end of the first line to finish off your triangle. Then label all of the sides and angles you have just measured/drawn.

Angle Side Angle Triangles (two angles with a side between them)

1. Draw a line with the given length
2. Measure one of the angles from one end of the line. The line going through the angle should be quite long

3. Measure the other angle from the other end of the line. The line through that angle will meet the line through the other angle. Then label all of the sides and angles you have just measured/drawn.

"Stewards Academy

Side Side Side triangles (triangles with all three sides but no angles)

1. Draw one of the lengths with a ruler
2. Set your compasses to the other length
3. Draw an arc from the end of your line using your compass

4. Repeat steps 2 and 3 for the other length and then draw lines from the ends of the line you measured to where the arcs cross. Then label all of the sides you have just measured/drawn.

Construct (draw) accurate triangles given the length of two sides and the angle between them-Side-Angle-Side.

SStewards Academy

Construct (draw) accurate triangles given the length of one side and the angles at each end of it - Angle-Side-Angle.

6)

Construct (draw) accurate triangles given the lengths of all three sides-Side-Side-Side.
1)

2)

4)

5)

6)

Construct these triangles using a ruler, compasses and protractor:

Section A (SSS Triangles)

1. $\triangle A B C$: Length $A B=10 \mathrm{~cm}$, Length $A C=4 \mathrm{~cm}$, Length $\mathrm{BC}=8 \mathrm{~cm}$.

acute scalene triangle

equilateral triangle

isosceles right
triangle
2. $\triangle A B C$: Length $A B=11 \mathrm{~cm}$,

Length $A C=9 \mathrm{~cm}$,
Length $B C=4 \mathrm{~cm}$.

isosceles triangle

right triangle

obtuse
scalene triangle

Label angle A. What is the size of angle A?
3. $\triangle P Q R$: Length $\mathrm{PQ}=3 \mathrm{~cm}$,

Length $Q R=7 \mathrm{~cm}$, Length $\mathrm{PR}=5 \mathrm{~cm}$. Label angle P. What type of angle is P?

Section B (SAS Triangles)

4. $\triangle P Q R$: Length $P Q=4 \mathrm{~cm}$,

Angle $P=120^{\circ}$,
Length $P R=6 \mathrm{~cm}$.
Label length $Q R$. What is length $Q R$? Measured to one decimal place (1 d.p.)
5. $\triangle X Y Z$: Length $X Y=9 \mathrm{~cm}$,

Length $X Z=10 \mathrm{~cm}$,
Angle $X=30^{\circ}$.
Label length $Y Z$. What is length $Y Z$?
6. $\triangle A B C$: Length $A B=8 \mathrm{~cm}$,

Length $A C=8 \mathrm{~cm}$,
Angle $A=37^{\circ}$.
Label length $B C$. What is length $B C$?
Hence what type of triangle is $\triangle A B C$?

Stewards Academy

Section C (ASA Triangles)

7. $\triangle A B C$: Length $A B=6 \mathrm{~cm}$,

Angle $A=20^{\circ}$,
Angle $B=140^{\circ}$.
What is the size of angle A ?
What type of triangle is $A B C$? Therefore, can you find out the length of $B C$ without measuring it?
8. $\triangle X Y Z$: Length $X Y=6 \mathrm{~cm}$,

Angle $Y=40^{\circ}$
Angle $X=50^{\circ}$
What is the size of angle Z ?
What type of triangle is XYZ ?
9. $\triangle \mathrm{RST}$: Length $\mathrm{RS}=9 \mathrm{~cm}$

Angle $S=60^{\circ}$
Angle $\mathrm{R}=60^{\circ}$
What is the size of angle T ?
What type of triangle is $\triangle \mathrm{RST}$? Therefore how long are the other sides of the triangle without measuring them?

Can you construct an accurate drawing of

this animal?

S Stewards Academy

Constructing Triangles

Use a compass, a protractor and a ruler to construct each triangle, and complete the Angle b column.

To start, draw the horizontal base (B) for each triangle. Lengths are in cm .

Triangle	Side A	Angle a	Side B	Angle b	Side C	Angle c
$\mathbf{1}$	\times	40°	10		\times	70°
$\mathbf{2}$	\times	35°	9		8	\times
$\mathbf{3}$	8	\times	7		6	\times
$\mathbf{4}$	\times	25°	11		\times	55°
$\mathbf{5}$	7	\times	8.5		9.5	\times
$\mathbf{6}$	6.5	\times	7.5		\times	85°
$\mathbf{7}$	5	30°	9.5		\times	\times
$\mathbf{8}$	\times	\times	6.2		4.5	22°
What is different about triangles 7 \& 8?						

GCSE - AQA Foundation: June 2018 Paper 3, Q16
1 A sketch of triangle $A B C$ is shown.
In the space below, complete an accurate drawing of triangle ABC .

Not drawn accurately
[2 marks]

Stewards Academy

Week 5:

- LI: to use standard units of mass, length, time, money and other measures, including with decimal quantities

Demonstration Videos and Examples:
https://corbettmaths.com/2013/12/13/converting-between-metric-units-for-area/ https://corbettmaths.com/2013/05/18/inequalities/
https://corbettmaths.com/2013/12/28/metric-and-imperial-units-video-347/

Tasks:

Weight, Length and Capacity Place Mat

Capacity

1 litre $(\mathrm{I})=1000$ millilitres (ml)

1 litre (l) = 100 centilitres (cl)

1 centilitre $(\mathrm{cl})=10$ millilitres (ml)
0.1 litres $(I)=100$ millilitres (ml)

\qquad

Imperial Units

1 pint $=568 \mathrm{ml}$

$$
1 \text { inch }=2.5 \mathrm{~cm} \text { or } 25 \mathrm{~mm}
$$

$$
1 \text { foot }=12 \text { inches or } 30 \mathrm{~cm}
$$

1 mile $=1.6 \mathrm{~km}$
1 ounce $=25 \mathrm{~g} \& 1$ pound $(\mathrm{lb})=500 \mathrm{~g}$

S Stewards Academy

Name
Conversion : miles and km

160 km	90 miles	80 miles	7.5 miles	64 km
12.5 miles	90 km	32 km	88 km	24 km
56 km	10 miles	96 km	20 miles	70 km
12.5 miles	100 miles	4 km	45 miles	15 miles
50 miles	112 km	2.5 miles	80 km	40 miles

$20 \mathrm{~km} \approx \ldots .$. miles	2.5 miles $\approx \ldots . . \mathrm{km}$
$16 \mathrm{~km} \approx \ldots .$. miles	$32 \mathrm{~km} \approx \ldots .$. miles
$72 \mathrm{~km} \approx \ldots .$. miles	$160 \mathrm{~km} \approx \ldots .$. miles
60 miles $\approx \ldots . . . \mathrm{km}$	$24 \mathrm{~km} \approx \ldots .$. miles
100 miles $\approx \ldots . . \mathrm{km}$	55 miles $\approx \ldots . . . \mathrm{km}$

15 miles $\approx \ldots . . \mathrm{km}$	$80 \mathrm{~km} \approx \ldots .$. miles
35 miles $\approx \ldots . . \mathrm{km}$	40 miles $\approx \ldots . . \mathrm{km}$
$12 \mathrm{~km} \approx \ldots .$. miles	$20 \mathrm{~km} \approx \ldots .$. miles
20 miles $\approx \ldots . . \mathrm{km}$	$4 \mathrm{~km} \approx \ldots .$. miles
$64 \mathrm{~km} \approx \ldots .$. miles	70 miles $\approx \ldots . . \mathrm{km}$

\square
\square MISSING MEASURE \square

Name

54 mm	150 mm	7 cm	90 mm	52 mm
43 mm	40 mm	20 mm	73 mm	23 mm
60 mm	120 mm	30 mm	25 mm	8.3 cm
36 mm	9 cm	21 mm	8.5 cm	67 mm
42 mm	32 mm	7.2 cm	70 mm	50 mm

3.2 cm	7.3 cm
7 cm	70 mm
15 cm	6.7 cm
12 cm	5.2 cm
3 cm	9 cm

Name

0.2 m	1.5 m	0.6 m	0.5 m	1.42 m
0.33 m	120 cm	0.75 m	300 cm	1.4 m
0.98 m	0.8 m	0.8 m	0.05 m	1.1 m
1.2 m	210 cm	1.25 m	205 cm	130 cm
2 m	1.31 m	1.02 m	0.54 m	0.15 m

3 m	2.1 m
102 cm	200 cm
5 cm	125 cm
75 cm	150 cm
131 cm	33 cm

Name

5100 m	95 m	0.3 km	0.65 km	1.065 km
1050 m	3 km	1.275 km	5510 m	0.5 km
1.2 km	0.6 km	0.2 km	0.8 km	0.05 km
1.06 km	1500 m	2.7 km	0.45 km	2100 m
925 m	1000 m	1.2 km	755 m	1045 m

Change cm to mm and mm to cm

83 mm	2.5 cm
3.6 cm	4.3 cm
90 mm	5 cm
72 mm	85 mm
4 cm	2 cm

TOTAL

Change cm to m and m to cm

1.2 m	1.3 m
54 cm	142 cm
50 cm	15 cm
110 cm	2.05 m
80 cm	98 cm

Change m to km and km to m

3000 m	1.045 km
1.05 km	0.925 km
1275 m	5.51 km
1200 m	650 m
600 m	2700 m

TOTAL

Sts Stewards Academy

$$
\mathrm{cm}^{2} \text { to } \mathrm{mm}^{2} 1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}
$$

4. Complete the tables for the squares below.

Square B	
Side length	Area
................ mm mm ${ }^{2}$
............... cm cm^{2}
............... m m^{2}

Square C	
Side length	Area
$\ldots \ldots \ldots \ldots \ldots . \mathrm{mm}$	$\ldots \ldots \ldots \ldots . \mathrm{mm}^{2}$
$\ldots \ldots \ldots \ldots \ldots . \mathrm{cm}$	$\ldots \ldots \ldots \ldots . \mathrm{cm}^{2}$
$\ldots \ldots \ldots \ldots \ldots \mathrm{~m}$	$\ldots \ldots \ldots \ldots . \mathrm{m}^{2}$

Circle the correct answer.

Express in cm^{2}
a) $4 \mathrm{~m}^{2}$
$400 \mathrm{~cm}^{2}$
$4000 \mathrm{~cm}^{2}$
$40000 \mathrm{~cm}^{2}$
b) $0.5 \mathrm{~m}^{2}$
$50 \mathrm{~cm}^{2}$
$5000 \mathrm{~cm}^{2}$
$50000 \mathrm{~cm}^{2}$
c) $300 \mathrm{~mm}^{2}$
$0.3 \mathrm{~cm}^{2}$
$3 \mathrm{~cm}^{2}$
$30 \mathrm{~cm}^{2}$

Express in mm ${ }^{2}$
d) $16 \mathrm{~cm}^{2}$
$160 \mathrm{~mm}^{2}$
$1600 \mathrm{~mm}^{2}$
$16000 \mathrm{~mm}^{2}$
e) $9.5 \mathrm{~cm}^{2}$
$95 \mathrm{~mm}^{2}$
$950 \mathrm{~mm}^{2}$
$9500 \mathrm{~mm}^{2}$

Express in m^{2}
f) $760 \mathrm{~cm}^{2}$
$0.076 \mathrm{~m}^{2}$
$0.0076 \mathrm{~m}^{2}$
$0.76 \mathrm{~m}^{2}$

True or false?
a) To convert mm^{2} to cm^{2}, divide by 100 \qquad
b) To convert cm^{2} to m^{2}, divide by 100 \qquad
c) To convert mm^{2} to m^{2}, multiply by 1000000 \qquad

11. Put the correct symbol, either $=$, < or $>$, in each circle:
a) $75 \mathrm{~cm}^{2}$

$7.5 \mathrm{~m}^{2}$
b) $\quad 35 \mathrm{~m}^{2}$

$350000 \mathrm{~cm}^{2}$
c) $12500 \mathrm{~cm}^{2}$
d) $0.81 \mathrm{~m}^{2}$

$12.5 \mathrm{~m}^{2}$
$81 \mathrm{~cm}^{2}$

7. Complete the table below:

mm^{2}	$\mathrm{~cm}^{2}$	$\mathrm{~m}^{2}$
		0.4
	640	
12500		
	y	

8. A rectangular rug measures 6 m by 4 m .

What is the total cost of cleaning this rug at $£ 1.20$ per square metre?
9. A roll of wallpaper is 10 m long and 50 cm wide. Calculate its area in square metres.
10. A school hall measuring 10 m by 15 m is to be covered with square floor tiles with a side length of 50 cm .

How many tiles are required to cover the school hall?

1. John has worked out the perimeter of the shape below. What has he done wrong?

Correct his work.

2. Calculate the perimeter of this rectangle.

3. Draw five different rectangles with the area of $12 \mathrm{~cm}^{2}$.

Work out the perimeter of each of your rectangles.
"Stewards Academy

SStewards Academy

for Area and Volume Bronze	Yellow	Orange	Red	Light Blue	Blue
	$v<100$	$100 \leq v<200$	$200 \leq v<300$	$300 \leq v<400$	$400 \leq v<1000$

1. Convert $0.0129 \mathrm{~m}^{2}$ to cm^{2}	18. Convert $0.0885 \mathrm{~m}^{2}$ to cm^{2}	35. Convert $2124000 \mathrm{~cm}^{2}$ to m^{2}
2. Convert $4.5 \mathrm{~cm}^{2}$ to mm^{2}	19. Convert $507900000 \mathrm{~mm}^{2}$ to m^{2}	36. Convert $0.53 \mathrm{~cm}^{2}$ to mm^{2}
3. Convert $2.8 \mathrm{~cm}^{2}$ to mm^{2}	20. Convert $0.05 \mathrm{~m}^{2}$ to cm^{2}	37. Convert $130000000 \mathrm{~mm}^{2}$ to m^{2}
4. Convert $0.97 \mathrm{~cm}^{2}$ to mm^{2}	21. Convert $8.64 \mathrm{~cm}^{2}$ to mm^{2}	38. Convert $0.0997 \mathrm{~m}^{2}$ to cm^{2}
5. Convert $0.0114 \mathrm{~m}^{2}$ to cm^{2}	22. Convert $50200 \mathrm{~mm}^{2}$ to cm^{2}	39. Convert $7.57 \mathrm{~cm}^{2}$ to mm^{2}
6. Convert $0.0063 \mathrm{~m}^{2}$ to cm^{2}	23. Convert $0.00098934 \mathrm{~m}^{2}$ to mm^{2}	40. Convert $77500 \mathrm{~mm}^{2}$ to cm^{2}
7. Convert $8.41 \mathrm{~cm}^{2}$ to mm^{2}	24. Convert $63000000 \mathrm{~mm}^{2}$ to m^{2}	41. Convert $0.0817 \mathrm{~m}^{2}$ to cm^{2}
8. Convert $0.04977 \mathrm{~m}^{2}$ to cm^{2}	25. Convert $9550000 \mathrm{~mm}^{2}$ to m^{2}	42. Convert $70700 \mathrm{~mm}^{2}$ to cm^{2}
9. Convert $0.03964 \mathrm{~m}^{2}$ to cm^{2}	26. Convert $0.0549 \mathrm{~m}^{2}$ to cm^{2}	43. Convert $74400 \mathrm{~mm}^{2}$ to cm^{2}
10. Convert $0.04489 \mathrm{~m}^{2}$ to cm^{2}	27. Convert $0.0332 \mathrm{~m}^{2}$ to cm^{2}	44. Convert $0.000856 \mathrm{~m}^{2}$ to mm^{2}
11. Convert $405000000 \mathrm{~mm}^{2}$ to m^{2}	28. Convert $0.026386 \mathrm{~m}^{2}$ to cm^{2}	45. Convert $0.00094701 \mathrm{~m}^{2}$ to mm^{2}
12. Convert $3236200 \mathrm{~cm}^{2}$ to m^{2}	29. Convert $0.0013 \mathrm{~m}^{2}$ to cm^{2}	46. Convert $69000000 \mathrm{~mm}^{2}$ to m^{2}
13. Convert $46430 \mathrm{~mm}^{2}$ to cm^{2}	30. Convert $215000000 \mathrm{~mm}^{2}$ to m^{2}	47. Convert $300000000 \mathrm{~mm}^{2}$ to m^{2}
14. Convert $0.0000404 \mathrm{~m}^{2}$ to mm^{2}	31. Convert $97982 \mathrm{~mm}^{2}$ to cm^{2}	48. Convert $0.0982 \mathrm{~m}^{2}$ to cm^{2}
15. Convert $19881 \mathrm{~cm}^{2}$ to m^{2}	32. Convert $1570000 \mathrm{~mm}^{2}$ to m^{2}	49. Convert $0.000989 \mathrm{~m}^{2}$ to mm^{2}
16. Convert $48420 \mathrm{~mm}^{2}$ to cm^{2}	33. Convert $0.06833 \mathrm{~m}^{2}$ to cm^{2}	50. Convert $48810 \mathrm{~mm}^{2}$ to cm^{2}
17. Convert $10340 \mathrm{~mm}^{2}$ to cm^{2}	34. Convert $4.471 \mathrm{~cm}^{2}$ to mm^{2}	

Stewards Academy

Week 6:

- LI: to derive and apply formulae to calculate and solve problems involving perimeter and area of triangles, parallelograms and trapezia

Demonstration Videos:

https://corbettmaths.com/2013/12/20/area-of-a-rectangle-video-45/ https://corbettmaths.com/2012/08/02/area-of-compound-shapes/
https://corbettmaths.com/2013/12/21/area-of-a-parallelogram-video-44/
https://corbettmaths.com/2012/08/02/area-of-a-trapezium-video/

Tasks:

Name

15	50	30	56	24
20	77	36	21	66
10	10	30	20	4
44	60	72	60	99
27	54	12	48	42

base $=5 \mathrm{~cm}$, height $=12 \mathrm{~cm}$
base $=7 \mathrm{~cm}$, height $=11 \mathrm{~cm}$
base $=6 \mathrm{~cm}$, height $=9 \mathrm{~cm}$
base $=3 \mathrm{~cm}$, height $=5 \mathrm{~cm}$
base $=11 \mathrm{~cm}$, height $=9 \mathrm{~cm}$
base $=4 \mathrm{~cm}$, height $=5 \mathrm{~cm}$
base $=6 \mathrm{~cm}$, height $=10 \mathrm{~cm}$
base $=7 \mathrm{~cm}$, height $=8 \mathrm{~cm}$
base $=3 \mathrm{~cm}$, height $=10 \mathrm{~cm}$
base $=6 \mathrm{~cm}$, height $=8 \mathrm{~cm}$
base $=9 \mathrm{~cm}$, height $=8 \mathrm{~cm}$
base $=2 \mathrm{~cm}$, height $=5 \mathrm{~cm}$

TOTAL \square

"Stewards Academy

3)

SStewards Academy

Question 2: Work out the area of each of the parallelograms below. Include suitable units.
(a)

(d)

(g)

(b)

(e)

4.5 cm
(i)
1.2 m
(c)

(f)

(h)

Calculate the area of the parallelograms
1)

2)

3)

4)

Calculate the area of the trapeziums
1)

2)

3)

4)

Calculate x

Stewards Academy

Question 1: Find the area of each trapezium.
(a)
(b)

(c)

(d)

(e)

(f)

Question 2: Find the area of each trapezium.
(a)

(b)

(c)

(d)

(e)

(f)

Question 1: \quad Sketch five different trapezia with an area of $80 \mathrm{~cm}^{2}$

Question 2: Mr Taylor keeps chickens in the field shown.
Each chicken needs $3 \mathrm{~m}^{2}$.
What is the maximum number of chickens he can keep in the field?

Question 3: The trapezium and the triangle have the same area. Calculate the height of the triangle.

2. Calculate the area of the following shapes.

S Stewards Academy

3. Work out the total area of the shaded parallelograms.

8. Work out the shaded area.

Diagram not
drawn accurately

10. A picture frame is made by joining 4 trapezium-shaped pieces of wood together.
a) Find the area of each trapezium and the total area of the frame.

Attainment	Unit 3 －Construction and loci，Angles in parallel lines and Angles in polygons	
Band ：	Knowledge and Understanding	Skills
$\begin{aligned} & \frac{1}{4} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	Understands how to comvert measurements when squared 6＂	Conmerts cm^{2} to m^{2} when bolving problems 6 Finds the area of compound shapes involving triangles，trapeziums and parallelograms 11 Sets up and solkes an equation involving angles in parallell lines 10
$\frac{3}{3}$	Understands how to solve problems involving angles in pariallel lines 4 Understands how to construit triangles 2 Derives and uses the standard ruler and compass constructians：	lldentifies the different typer of angles formed by parallel lines and a transversal such as corresponding angles，alternate angles and interior angles 4 Uses the warious properties of angles in parallel lines to solve problems 5
雨	Revagnises how to find the area of various thapes 11 Understands that angles in a triangle add up to 160 degrees 1	Constructs a triange given three sides using a compass 2 Finds inissing angles in geometrical figures 3 3 Draws a rhombus given two sides and one angle 3b Solves problems with angles in triangles 5 Finds area of a trapezium 7 Solves real life problems irvolhing area with conversions 5 Finds the area of a parallelogram 11
$\frac{\stackrel{5}{4}}{\frac{i}{5}}$	Dernes and illustrates properties of quadrilaterrals 3 Understands how to comert standard units of mesture S	Draws a square given one side $9 a$ Draws a quadrilaterial with the parallel sides indicated 9b
$\frac{8}{5}$	Understands angle properties in a triangle 1	Ildentify mistakes in measuring angles 1

