

Maths Spring 1

Year 8

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.

The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents

Page 3: Big Picture - Year 8 Overview

Page 4: Knowledge Organiser

Page 5-9: Week 1 – Angle Basics

Page 10-15: Week 2 – Angles in Parallel Lines

Page 16-20: Week 3 – Angles in Polygons

Page 21-26: Week 4 – Constructions

Page 27-33: Week 5 – Conversions

Page 34-39: Week 6 – Area

Page 40: Assessment Ladder

Week 1:

• LI: To apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles

Demonstration Videos:

https://corbettmaths.com/2012/08/10/angles-in-a-full-circle/

https://corbettmaths.com/2013/12/19/angles-straight-line-video-35/

https://corbettmaths.com/2013/03/16/vertically-opposite-angles/

Tasks:

ANGLE ANGLES AROUND A POINT	NO PROT	RACTOR	Ref: G421. 2F1
Al Find the value x	A2 Find the value x	A3 Find the value x	A4 Find the value x
307°	128°	219°	x° 82°
B1 Find the value x	B2 Find the value x	B3 Find the value x	B4 Find the value x
147° 132°	114° x° 102°	x° 106°	161° x° 158°
C1 Find the value of x	C2 Find the value of x	C3 Find the value of x	C4 Find the value of x
75° 129°	51° x° 152°	63° 42° 61°	119°

Angles (1)

Name Adding to 360°

64°	195°	150°	295°	251°
194°	241°	27°	132°	74°
81°	124	41°	137°	214°
143°	77°	140°	48°	325°
129°	319°	31°	228°	32°

223° + ? = 360°	35° + ? = 360°	279° + ? = 360°	41° + ? = 360°
217° + ? = 360°	283° + ? = 360°	65° + ? = 360°	312° + ? = 360°
166° + ? = 360°	228° + ? = 360°	210° + ? = 360°	296° + ? = 360°
231° + ? = 360°	165° + ? = 360°	328° + ? = 360°	329° + ? = 360°
333° + ? = 360°	132° + ? = 360°	146° + ? = 360°	109° + ? = 360°

ANGLE ANGLES WHICH FORM A STRAIGHT LINE

NO PROTRACTOR

ANGLE ANGLES WHICH FORM A STRA	Ref. G421. 1F1		
Al Find the value x	A2 Find the value x	A3 Find the value x	A4 Find the value x
132° x°	38°	x° 31°	127° x°
B1 Find the value x	B2 Find the value x	B3 Find the value x	B4 Find the value x
43° 88° x°	41° 57°	72° x° 52°	34° 53° x° 32°
C1 Find the value x	C2 Find the value x	C3 Find the values of x and y	C4 Find the values of x and y
149° x°	42°	109° x° 137° y°	135° y° 63°

Name

Find t	he	missing	angle	needed	to r	make	a straight	line

165°	25°	160°	125°	80°
150°	40°	90°	85°	100°
140°	70°	115°	55°	75°
35°	30°	95°	55°	110°
145°	45°	35°	20°	155°

65°, ?	110°, ?
15°, ?	35°, ?
105°, ?	140°, ?
145°, ?	155°, ?
85°, ?	125°, ?

2			
	\		

(a) Calculate angle x.

(a) Work out the size of the angle marked x.

135°

b)	Give a reason for your answer.	

(b) Calculate angle w.

5

Stewards Academy

ANGLE RULE: Vertically opposite angles are equal.

Calculate the value of each angle.

Annie is working out the size of angle f.

Angle f is equal to 79° because vertically opposite angles are equal.

Do you agree with Annie? _____

Explain your answer.

Angle f is one quarter of the size of angle g.

Angle f is 28°.

Are angles x and y vertically opposite? ______ Explain your answer.

The diagram shows four angles formed by two straight lines.

a) Measure the sizes of the angles.

a =

h -	
o =	

c =

b) What is the total of angles a and b?

Explain why.

- 1		
- 1		

- Do any other pairs of angles have this same total?
- c) Angles \boldsymbol{a} and \boldsymbol{c} are vertically opposite angles.

What do you notice about the sizes of angles a and c?

- d) Angles b and d are also vertically opposite angles. What do you notice about the sizes of angles b and d?
- e) Complete the sentence.

Vertically opposite angles _

Work out the unknown angles.

a)

c)

b)

d)

$$d =$$

Week 2:

• LI: To understand and use the relationship between parallel lines and alternate and corresponding angles

Demonstration Videos:

https://corbettmaths.com/2013/04/04/parallel-lines-angles/

Q1

Question 1: Are the lines AB and CD parallel? Explain your answer.

Question 2: Find the missing angle.

Give reasons for your answer.

Question 3: Find x

Question 4: Find x

AB is parallel to CD.

(a) Work out the size of the angle marked x.

Give a reason for your answer.	
	(2)

(b) Work out the size of the angle marked y.

		_			_			
1		2			3		4	
		5	6				7	8
9	10		11					
	12	13				14		
15				16				
17	18		19			20	21	
	22			23	24		25	26
27					28			

Across

1.

3.

5.

7.

9.

11.

12.

14.

16.

17.

19.

20.

22.

23.

25.

Down

1.

2.

3.

4.

6.

8.

10.

13.

14.

15.

18.

21.

24.

26.

Find x

133°

4)

Week 3:

• LI: To derive and use the sum of angles in a triangle and use it to deduce the angle sum in any polygon, and to derive properties of regular polygons

Demonstration Videos:

https://corbettmaths.com/2013/03/17/angles-in-quadrilaterals/

https://corbettmaths.com/2012/08/10/angles-in-a-triangle/

https://corbettmaths.com/2012/08/10/types-of-angle/

Tasks:

Name

35°	80°	110°	40°	75°
20°	140°	50°	65°	5°
35°	125°	45°	100°	105°
10°	130°	155°	145°	50°
20°	55°	60°	115°	50°

25°, 30°, ?	50°, 15°, ?	90°, 85°, ?	75°, 65°, 1
25°, 25°, ?	95°, 75°, ?	25°, 45°, ?	45°, 55°, î
15°, 10°, ?	75°, 55°, ?	80°, 45°, ?	75°, 85°, 1
65°, 15°, ?	50°, 65°, ?	90°, 45°, ?	25°, 10°, 1
35°, 95°, ?	70°, 35°, ?	30°, 45°, ?	60°, 60°, 1

Right-Angled

Equilateral

Scalene

Create equations and **Solve** the following problems for *x*.

Name

59°	13°	75°	26°	121°
11°	22°	24°	96°	67°
23°	17°	53°	60°	24°
80°	122°	33°	30°	54°
34°	103°	34°	35°	80°

Two angles in a triangle are given. Find the missing angle

129°, 17°, ?	42°, 58°, ?	36°, 111°, ?	91°, 66°, ?
26°, 94°, ?	132°, 18°, ?	142°, 14°, ?	106°, 63°, ?
46°, 59°, ?	24°, 53°, ?	64°, 57°, ?	115°, 43°, ?
112°, 14°, ?	50°, 34°, ?	37°, 63°, ?	78°, 35°, ?
16°, 42°, ?	129°, 34°, ?	103°, 42°, ?	26°, 33°, ?

Question 1: Find the size of each missing angle.

Question 2: Shown below are three trapezia. Find the size of each missing angle.

Shown below are three parallelograms. Question 3: Find the size of each missing angle.

Question 4: Shown below are three rhombuses. Find the size of each missing angle.

17

This is a Tangram Puzzle, Can you work out all of the angles made in the puzzle without measuring them?

	v =		w =	
g =		n =		u =
f =		m =		t=
e =		=		s =
d =		k =		r=
c =		j =		q =
b =		j =		p =
a =		h =		0 =

Find the size of each angle marked with a letter and give reasons for your answers.

Diagrams not drawn accurately

Size of angle e: Reason:

Size of angle f: Reason:

Size of angle g: Reason:

Size of angle h: Reason:

The image shows three straight lines that intersect at a point. Tick **true** or **false** for each of the statements below.

	True	False
Angle ${f f}$ is vertically opposite angle ${f d}$		
d + b + c = 180°		
a + f = 180°		
c + b = f + e		

Find the missing angles

Find the missing angles

Week 4:

• LI: To derive and illustrate properties of triangles, quadrilaterals, circles, and other plane figures using appropriate language and technologies

Demonstration Videos:

https://corbettmaths.com/2013/03/28/constructing-sas-triangles/ https://corbettmaths.com/2013/03/29/constructing-asa-triangles/ https://corbettmaths.com/2013/03/26/constructing-sss-triangles/ https://corbettmaths.com/2013/03/26/angle-bisector/

Tasks:

Side Angle Side triangles (there is an angle between two sides)

- 1. Using a ruler, draw out a line that is the length of one of the sides
- 2. Measure the given angle from the end of the line you have just drawn and draw a long line to mark your angle
- 3. Using a ruler, measure along the line for the given length
- Connect the other end of the first line to finish off your triangle.
 Then <u>label all of the sides and angles</u> you have just measured/drawn.

Angle Side Angle Triangles (two angles with a side between them)

- 1. Draw a line with the given length
- 2. Measure one of the angles from one end of the line. The line going through the angle should be quite long
- 3. Measure the other angle from the other end of the line. The line through that angle will meet the line through the other angle. Then <u>label all of the sides and angles</u> you have just measured/drawn.

Side Side Side triangles (triangles with all three sides but no angles)

- 1. Draw one of the lengths with a ruler
- 2. Set your compasses to the other length

3. Draw an arc from the end of your line using your compass

4. Repeat steps 2 and 3 for the other length and then draw lines from the ends of the line you measured to where the arcs cross. Then <u>label all of the sides</u> you have just measured/drawn.

Construct (draw) accurate triangles given the length of two sides and the angle between them - Side-Angle-Side.

Construct (draw) accurate triangles given the length of one side and the angles at each end of it - Angle-Side-Angle.

Construct (draw) accurate triangles given the lengths of all three sides - Side-Side.

Construct these triangles using a ruler, compasses and protractor:

Section A (SSS Triangles)

 ΔABC: Length AB=10cm, Length AC=4cm,

2. ΔABC: Length AB=11cm,

Length BC=8cm.

acute scalene triangle

equilateral triangle

isosceles triangle

obtuse scalene triangle

isosceles right triangle

Length AC=9cm, Length BC=4cm.

Label angle A. What is the size of angle A?

ΔPQR: Length PQ=3cm,

Length QR=7cm,

Length PR=5cm.

Label angle P. What type of angle is P?

Section B (SAS Triangles)

4. ΔPQR: Length PQ= 4cm,

Angle P= 120°,

Length PR= 6cm.

Label length QR. What is length QR? Measured to one decimal place (1 d.p.)

ΔXYZ: Length XY= 9cm,

Length XZ= 10cm,

Angle X= 30°.

Label length YZ. What is length YZ?

ΔABC: Length AB= 8cm,

Length AC= 8cm,

Angle $A = 37^{\circ}$.

Label length BC. What is length BC?

Hence what type of triangle is ΔABC?

Section C (ASA Triangles)

7. ΔABC: Length AB=6cm,

Angle A = 20°,

Angle B = 140° .

What is the size of angle A?

What type of triangle is ABC? Therefore, can you find out the length of BC without measuring it?

8. ΔXYZ: Length XY= 6cm,

Angle Y = 40°

Angle X = 50°

What is the size of angle Z?

What type of triangle is XYZ?

9. ΔRST: Length RS = 9cm

Angle S = 60°

Angle R = 60°

What is the size of angle T?

What type of triangle is Δ RST? Therefore how long are the other sides of the triangle without measuring them?

Constructing Triangles

Use a compass, a protractor and a ruler to construct each triangle, and complete the **Angle b column**.

To start, draw the horizontal base (B) for each triangle. Lengths are in cm.

Triangle	Side A	Angle a	Side B	Angle b	Side C	Angle c
1	×	40°	10		×	70°
2	×	35°	9		8	×
3	8	×	7		6	×
4	×	25°	11		×	55°
5	7	×	8.5		9.5	×
6	6.5	×	7.5		×	85°
7	5	30°	9.5		×	×
8	×	×	6.2		4.5	22°

What is different about triangles 7 & 8?

Week 5:

LI: to use standard units of mass, length, time, money and other measures, including with decimal quantities

Demonstration Videos and Examples:

https://corbettmaths.com/2013/12/13/converting-between-metric-units-for-area/

https://corbettmaths.com/2013/05/18/inequalities/

https://corbettmaths.com/2013/12/28/metric-and-imperial-units-video-347/

Tasks:

Weight, Length and Capacity Place Mat

Length

- 1 centimetre (cm) = 10 millimetres (mm)
- 1 metre (m) = 100 centimetres (cm)
- 1 kilometre (km) = 1000 metres (m)

- 1 gram (g) = 1000milligrams (mg)
- 0.1 kilograms (kg) = 100 grams (g)
- 1 kilogram (kg) = 1000 grams (g)
 - 1 tonne = 1000 kilograms (kg)

Capacity

- 1 litre (l) = 1000 millilitres (ml)
- 1 litre (l) = 100 centilitres (cl)
- 1 centilitre (cl) = 10 millilitres (ml)
- 0.1 litres (l) = 100 millilitres (ml)

Imperial Units

- 1 pint = 568ml
- 1 inch = 2.5 cm or 25 mm
- 1 foot = 12 inches or 30 cm
 - 1 mile = 1.6 km
- 1 ounce = 25g & 1 pound (lb) = 500g

Name								Conversion: miles and km
160 km	90 miles	80 miles	7.5 miles	64 km	20 km ≈miles	2.5 miles ≈ km	15 miles ≈ km	80 km ≈miles
12.5 miles	90 km	32 km	88 km	24 km	16 km ≈miles	32 km ≈miles	35 miles ≈ km	40 miles ≈ km
56 km	10 miles	96 km	20 miles	70 km	72 km ≈miles	160 km ≈miles	12 km ≈miles	20 km ≈miles
12.5 miles	100 miles	4 km	45 miles	15 miles	60 miles ≈ km	24 km ≈miles	20 miles ≈ km	4 km ≈miles
50 miles	112 km	2.5 miles	80 km	40 miles	100 miles ≈ km	55 miles ≈ km	64 km ≈miles	70 miles ≈ km
							MISSING MEAS	SURE
Name							Change cn	n to mm and mm to cm
54 mm 1	L50 mm 7	cm 90 m	nm 52 mm	1	3.2 cm	7.3 cm	83 mm	2.5 cm
43 mm	40 mm 20) mm 73 m	nm 23 mm		7 cm	70 mm	3.6 cm	4.3 cm
60 mm 1	120 mm 30) mm 25 m	nm 8.3 cm		15 cm	6.7 cm	90 mm	5 cm
36 mm	9 cm 21	mm 8.5 c	cm 67 mm		12 cm	5.2 cm	72 mm	85 mm
42 mm	32 mm 7.	2 cm 70 m	nm 50 mm		3 cm	9 cm	4 cm	2 cm
							TOTAL (
Name							Change	cm to m and m to cm
0.2 m	1.5 m 0	.6 m 0.5	m 1.42 m]	3 m	2.1 m	1.2 m	1.3 m
0.33 m	120 cm 0.	75 m 300 d	cm 1.4 m	1	102 cm	200 cm	54 cm	142 cm
0.98 m	0.8 m 0	.8 m 0.05	m 1.1 m		5 cm	125 cm	50 cm	15 cm
1.2 m	210 cm 1.	25 m 205	cm 130 cm		75 cm	150 cm	110 cm	2.05 m
2 m	1.31 m 1.	0.54 0.54	m 0.15 m		131 cm	33 cm	80 cm	98 cm
							TOTAL	
Name							Change	m to km and km to m
5100 m	95 m 0.3	3 km 0.65 k	m 1.065 km		0.755 km	1 km	3000 m	1.045 km
1050 m	3 km 1.27	75 km 5510	m 0.5 km		0.095 km	2.1 km	1.05 km	0.925 km
1.2 km	0.6 km 0.2	2 km 0.8 ki	m 0.05 km		5.1 km	450 m	1275 m	5.51 km
1.06 km	1500 m 2.7	7 km 0.45 k	2100 m		1065 m	50 m	1200 m	650 m
925 m	1000 m 1.2	2 km 755 r	n 1045 m		1060 m	1.5 km	600 m	2700 m
		_				_	_	

4. Complete the tables for the squares below.

Square A					
Side length	Area				
mm	mm²				
cm	cm²				
m	m²				

29

Square B						
Side length	Area					
mm	mm²					
cm	cm²					
m	m²					

Square C					
Side length	Area				
mm	mm²				
cm	cm²				
m	m²				

Circle the correct answer.

Express in cm²

a) 4 m ²	$400~\mathrm{cm^2}$	$4000~\mathrm{cm^2}$	40 000 cm ²
b) 0.5 m ²	$50~\mathrm{cm^2}$	$5000~\mathrm{cm^2}$	$50~000~\mathrm{cm^2}$
c) 300 mm ²	0.3 cm ²	3 cm²	30 cm^2

Express in mm^2

d)	16 cm ²	160 mm ²	1600 mm ²	16 000 mm ²	
e)	9.5 cm ²	95 mm²	950 mm ²	$9500\mathrm{mm^2}$	
Ex	press in m²				
f)	760 cm ²	0.076 m^2	$0.0076~{\rm m}^2$	$0.76 \mathrm{\ m^2}$	
Trı	ue or false?				
a)	a) To convert mm² to cm², divide by 100				
b)	To convert cm² to m	² , divide by 100			

c) To convert $\mathrm{mm^2}$ to $\mathrm{m^2}$, multiply by 1 000 000.....

11. Put the correct symbol, either =, < or >, in each circle:

a)	75 cm²	7.5 m ²
b)	$35~\mathrm{m}^2$	350 000 cm ²
c)	125 00 cm ²	12.5 m ²
d)	$0.81~\mathrm{m}^2$	81 cm²

7. Complete the table below:

	mm²	cm ²	m²
			0.4
		640	
٨	12500		
		у	
	х		

- 8. A rectangular rug measures 6 m by 4 m. What is the total cost of cleaning this rug at £1.20 per square metre?
 - A roll of wallpaper is 10 m long and 50 cm wide. Calculate its area in square metres.
 - 10. A school hall measuring 10 m by 15 m is to be covered with square floor tiles with a side length of 50 cm.

How many tiles are required to cover the school hall?

John has worked out the perimeter of the shape below. What has he done wrong?
 Correct his work.

2. Calculate the perimeter of this rectangle.

Draw five different rectangles with the area of 12 cm².
 Work out the perimeter of each of your rectangles.

for Area and Volume Converting Between Units of Measure

Converting Between Units of Measure for Area and Volume Bronze

Convert each unit of measure, then use the key to shade each section the correct colour.

Yellow	Orange	Red	Light Blue	Blue
v < 100	100 ≤ v < 200	200 ≤ v < 300	300 ≤ ν < 400	400 ≤ v < 1000

1. Convert 0.0129 m ² to cm ²		18. Convert 0.0885 m ² to cm ²	35. Convert 2 124 000 cm ² to m ²
2. Convert 4.5cm² to mm²		19. Convert 507 900 000 mm² to m²	36. Convert 0.53cm² to mm²
3. Convert 2.8cm² to mm²		20. Convert 0.05 m² to cm²	37. Convert 130 000 000 mm² to m²
4. Convert 0.97cm ² to mm ²		21. Convert 8.64cm² to mm²	38. Convert 0.0997m² to cm²
5. Convert 0.0114m² to cm²		22. Convert 50 200 mm² to cm²	39. Convert 7.57cm² to mm²
6. Convert 0.0063m² to cm²		23. Convert 0.00098934m² to mm²	40. Convert 77 500 mm² to cm²
7. Convert 8.41cm ² to mm ²		24. Convert 63 000 000 mm² to m²	41. Convert 0.0817m² to cm²
8. Convert 0.04977m² to cm²		25. Convert 9 550 000 mm² to m²	42. Convert 70 700 mm² to cm²
9. Convert 0.03964m² to cm²		26. Convert 0.0549 m² to cm²	43. Convert 74 400 mm² to cm²
10. Convert 0.04489m^2 to cm^2		27. Convert 0.0332m² to cm²	44. Convert 0.000856m² to mm²
11. Convert 405 000 000 mm² to n	ı²	28. Convert 0.026386 m ² to cm ²	45. Convert 0.00094701m² to mm²
12. Convert 3 236 200 \mbox{cm}^2 to \mbox{m}^2		29. Convert 0.0013m² to cm²	46. Convert 69 000 000 mm² to m²
13. Convert 46 430 mm² to cm²		30. Convert 215 000 000 mm² to m²	47. Convert 300 000 000 mm² to m²
14. Convert 0.0000404m² to mm²		31. Convert 97 982 mm² to cm²	48. Convert 0.0982m² to cm²
15. Convert 19 881cm^2 to m^2		32. Convert 1 570 000 mm² to m²	49. Convert 0.000989m² to mm²
16. Convert 48 420 mm² to cm²		33. Convert 0.06833m² to cm²	50. Convert 48 810 mm² to cm²
17. Convert 10 340 mm² to cm²		34. Convert 4.471cm² to mm²	

Week 6:

• LI: to derive and apply formulae to calculate and solve problems involving perimeter and area of triangles, parallelograms and trapezia

Demonstration Videos:

https://corbettmaths.com/2013/12/20/area-of-a-rectangle-video-45/

https://corbettmaths.com/2012/08/02/area-of-compound-shapes/

https://corbettmaths.com/2013/12/21/area-of-a-parallelogram-video-44/

https://corbettmaths.com/2012/08/02/area-of-a-trapezium-video/

Tasks:

Name								Calculating the area of a rectangle
15	50	30	56	24	base = 3 cm, height = 8 cm	base = 2 cm, height = 2 cm	base = 6 cm, height = 9 cm	base = 3 cm, height = 5 cm
20	77	36	21	66	base = 5 cm, height = 12 cm	base = 7 cm, height = 11 cm	base = 11 cm, height = 9 cm	base = 4 cm, height = 5 cm
10	10	30	20	4	base = 6 cm, height = 7 cm	base = 7 cm, height = 3 cm	base = 2 cm, height = 5 cm	base = 6 cm, height = 10 cm
44	60	72	60	99	base = 3 cm, height = 10 cm	base = 6 cm, height = 8 cm	base = 9 cm, height = 8 cm	base = 7 cm, height = 8 cm
27	54	12	48	42	base = 3 cm, height = 4 cm	base = 4 cm, height = 11 cm	base = 5 cm, height = 6 cm	base = 2 cm, height = 5 cm
height TOTAL								

Question 2: Work out the area of each of the parallelograms below. Include suitable units.

Question 1: Find the area of each trapezium.

Question 2: Find the area of each trapezium.

Question 1: Sketch five different trapezia with an area of 80cm²

Question 2: Mr Taylor keeps chickens in the field shown.

Each chicken needs 3m².

What is the maximum number of chickens he can keep in the field?

Question 3: The trapezium and the triangle have the same area. Calculate the height of the triangle.

2. Calculate the area of the following shapes.

Diagrams not drawn accurately

3. Work out the total area of the shaded parallelograms.

Diagram not drawn accurately

8. Work out the shaded area.

Diagram not drawn accurately

- 10. A picture frame is made by joining 4 trapezium-shaped pieces of wood together.
 - a) Find the area of each trapezium and the total area of the frame.

Maths Assessment Ladder

Y8 Unit 3 Spring 1

Attainment	Unit 3 - Construction and loci, Angles in parallel lines and Angles in polygons				
Band:	Knowledge and Understanding	Skills			
Yellow Plus	Understands how to convert measurements when squared 6*	Converts cm² to m² when solving problems 6 Finds the area of compound shapes involving triangles, trapeziums and parallelograms 11 Sets up and solves an equation involving angles in parallel lines 10			
Yellow	Understands how to solve problems involving angles in parallel lines 4 Understands how to construct triangles 2 Derives and uses the standard ruler and compass constructions 3	Identifies the different types of angles formed by parallel lines and a transversal such as corresponding angles, alternate angles and interior angles 4 Uses the various properties of angles in parallel lines to solve problems 5			
Blue	Recognises how to find the area of various shapes 11 Understands that angles in a triangle add up to 180 degrees 1	Constructs a triangle given three sides using a compass 2 Finds missing angles in geometrical figures 3a Draws a rhombus given two sides and one angle 3b Solves problems with angles in triangles 5 Finds area of a trapezium 7 Solves real life problems involving area with conversions 8 Finds the area of a parallelogram 11			
Green	Derives and illustrates properties of quadrilaterals 3 Understands how to convert standard units of measure 8	Draws a square given one side 9a Draws a quadrilateral with the parallel sides indicated 9b			
White	Understands angle properties in a triangle 1	Identify mistakes in measuring angles 1			