Maths Spring 1

Year 7

Blended Learning Booklet

Name:

Form:

Each week covers topics you would complete in your 3 Maths lessons that week. Write out the title and LI and then complete the tasks.

All video links are online using the ClassCharts link.
The Knowledge Organiser on page 4 has further practice questions and page numbers linking to your pocket revision guides for all the key information and examples to help you with this unit.

Upload all work onto ClassCharts for feedback.

Contents

Page 3: Big Picture - Year 7 Overview

Page 4: Knowledge Organiser

Page 5-10: Week 1 - Measurements

Page 11-17: Week 2 - Angles.
You will need a protractor for some of these tasks

Page 18-23: Week 3 - Further angles

Page 24-30: Week 4 - Triangles

Page 31-36: Week 5 - Symmetries

Page 37-40: Week 6 - Symmetry and tessellation

Page 41: Assessment Ladder

Other useful information/websites
The school login for MyMaths.co.uk is
stewards
The password is

triangle

Every topic in this booklet is covered on MyMaths.co.uk in the online lessons for further support at home.

You also have a study guide (the pages you can use for each section are on your Knowledge Organiser - page 4)

Other websites you can look up information from include:
Oak National Academy
BBC Bitesize
MathisFun.com
Mathsgenie

SStewards Academy

*Stewards Academy

Stewards Academy

Week 1:

- LI: I can record and order measurements using decimal notation

Demonstration Video: https://corbettmaths.com/2012/08/10/ordering-decimals-video/

 Tasks:Question 1: Arrange in order from smallest to largest
(a) $3.7,3.5,3.9,3.4,3.8$
(b) $9.2,2.9,5.4,1.8,8.7$
(c) $4.6,4.9,14.1,0.9,1.2$
(d) $8.13,8.05,8.24,8.09,8.15,8.02$
(e) $1.53,1.48,1.59,1.44,2.11,0.98$
(f) $0.59,1.24,0.45,1.34,0.88,2.01$

Question 2: Arrange in order from smallest to largest
(a) 1.2, 1.08, 1.13, 1.6, 1.29
(b) $5.25,5.2,5.19,5.08,5.1,5.21$
(c) $40.6,46.1,40.49,40.68,46,46.09$
(d) $0.24,0.3,0.125,0.2,0.199,0.18$
(e) $0.82,0.082,0.9,0.807,0.8$
(f) $65,6.5,0.65,7.65,0.076,7$
(g) $0.25,0.3,0.2,0.06,0.19$
(h) 7.81, 7.49, 7.9, 7.007, 7.1, 7.107
(i) $10.083,10.08,10.009,10.56,10.3$
(j) $0.342,0.075,0.256,0.34,0.6,0.4$

Question 3: Place the correct sign, < or > between the following pairs of decimals
(a) 6.3 \qquad 6.7
(b) 0.8 \qquad 0.5
(c) 2.2 \square 2.15
(d) 8.21 \qquad 8.9
(e) 9.099 \qquad 9.0971
(f) 1.205

4 Circle the smaller measurement in each pair.

(a)	5 centimetres	40 millimetres
(b)	5 grams	40 kilograms
(c)	5 litres	40 centilitres

Stewards Academy

Question 1: Arrange these temperatures in order, from lowest to highest
(a) $11^{\circ} \mathrm{C}, 10.8^{\circ} \mathrm{C}, 12.3^{\circ} \mathrm{C}, \quad 15^{\circ} \mathrm{C}, 12.7^{\circ} \mathrm{C}$
(b) $8.5^{\circ} \mathrm{C}, \quad 0.7^{\circ} \mathrm{C},-3{ }^{\circ} \mathrm{C}, \quad 0.9^{\circ} \mathrm{C}, 6{ }^{\circ} \mathrm{C}, 1.3^{\circ} \mathrm{C},-5.1^{\circ} \mathrm{C}$

Question 2: Arrange these amounts of money in order, from highest to lowest.
(a) $£ 6.74, £ 10, £ 1.99, £ 8, £ 3.30, £ 2$
(b) 80 p, $£ 1, £ 0.09,23 p, £ 2.75, £ 0.82, £ 20$

Question 3: The distance of various landmarks from Big Ben are listed below. Arrange the landmarks in order, from closest to furthest.

London Eye	0.41 miles
Wembley	11.62 miles
Buckingham Palace	0.8 miles
Trafalgar Square	0.63 miles
Hyde Park	2.27 miles
Thorpe Park	24.7 miles

Question 4: Arrange these measurements in order from largest to smallest
(a) $6.2 \mathrm{~m}, 6.077 \mathrm{~m}, 6.31 \mathrm{~m}, 6.19 \mathrm{~m}, 6.4 \mathrm{~m}, 6.009 \mathrm{~m}$
(b) $5 \mathrm{~kg}, 800 \mathrm{~g}, 1.2 \mathrm{~kg}, 90 \mathrm{~g}, 0.6 \mathrm{~kg}$

Question 5: The heights of seven footballers are listed below.
$1.9 \mathrm{~m}, 1.82 \mathrm{~m}, 1.78 \mathrm{~m}, 1.8 \mathrm{~m}, 1.88 \mathrm{~m}, 1.86 \mathrm{~m}, 1.7 \mathrm{~m}$
(a) Arrange the heights in order from smallest to largest.
(b) Write down the median height.
(c) A player is picked at random.

Write down the probability that he is over 1.85 m .

(The median is the middle number once you have arranged them. The probability is how many fit the criteria out of how many in total)

Question 6: The lengths of time that it takes to complete a jigsaw are below.
0.5 hours, 1.25 hours, 100 minutes, 0.75 hours, 40 minutes,

2 hours, 1.5 hours, 180 minutes, 61 minutes, 0.25 hours.
(a) Arrange the times in order, from quickest to longest.
(b) What fraction of the people completed the jigsaw in under 1 hour?
(c) What percentage of people took 2 hours or longer?

Stewards Academy

Week 1:

- LI: I can estimate and convert between length in kilometres, metres, centimetres and millimetres

Demonstration Video: https://corbettmaths.com/2014/01/16/metric-units-for-length/

Task:

Question 1: Convert the following lengths into centimetres (cm)
(a) 4 m
(b) 9 m
(c) 12 m
(d) 59 m
(e) 750 m
(f) 105 m
(g) 2.5 m
(h) 8.2 m
(i) 1.53 m
(j) 0.6 m
(k) 0.38 m
(l) 0.03 m Question 2: Convert the following lengths into metres (m)
(a) 300 cm
(b) 700 cm
(c) 900 cm
(d) 1400 cm
(e) 250 cm
(f) 740 cm
(g) 1000 cm
(h) 348 cm
(i) 80 cm
(j) 70 cm
(k) 53 cm
(l) 2 cm

Question 3: Convert the following lengths into centimetres (cm)
(a) 60 mm
(b) 30 mm
(c) 65 mm
(d) 87 mm
(e) 280 mm
(f) 812 mm
(g) 2030 mm
(h) 9000 mm
(i) 7 mm
(j) 4 mm
(k) 1.3 mm
(l) 0.6 mm

Question 4: Convert the following lengths into millimetres (mm)
Question 5: Convert the following lengths into metres (m)
(a) 4 km
(b) 9 km
(c) 13 km
(d) 28 km
(e) 125 km
(f) 300 km
(g) 7000 km
(h) 7200 km
(i) 0.5 km
(j) 0.8 km
(k) 1.2 km
(l) 2.6 km
(m) 0.07 km
(n) 0.02 km
(o) 0.006 km
(p) 1.008 km

Question 6: Convert the following lengths into kilometres (km)
(a) 6000 m
(b) 2000 m
(c) 5500 m
(d) 6400 m
(e) 800 m
(f) 600 m
(g) 450 m
(h) 125 m
(i) 70 m
(j) 90 m
(k) 35 m
(l) 4 m
(m) 90000 m
(n) 40000 m
(o) 340000 m
(p) 90530 m

Question 7: Convert the following lengths
(a) 2 m into mm
(b) 8 m into mm
(c) 6500 mm into m
(d) 9000 mm into m
(e) 48000 cm into km
(f) 9250000 cm into km
(g) 780 mm into m
(h) 4 km into cm
(i) 1 km into mm
(j) 25000000 mm into $\mathrm{km}(\mathrm{k}) 0.5 \mathrm{~km}$ into cm
(l) 0.023 km into mm

Circle the most sensible estimate for these:

Height of a two storey house 10m
20m
30m
40m

Distance from London to Cardiff 2500 m 250km
2.5km

25000km

Length of a swimming pool
2.5m

5m
25m
200m

Stewards Academy

Week 1:

- LI: I can estimate and convert between mass in kilograms and grams

Demonstration Videos: https://www.youtube.com/watch?v=u6SX-BjU2Wg\&feature=emb_title

Tasks:

Question 1 Convert the following into grams
(a) 2 kg
(b) 7 kg
(c) 19 kg
(d) 20 kg
(e) 1.5 kg
(f) 2.4 kg
(g) 4.7 kg
(h) 0.5 kg
(i) 0.8 kg
(j) 0.16 kg
(k) 0.03 kg
(l) 0.008 kg

Question 2 Convert the following into kilograms
(a) 7000 g
(b) 3000 g
(c) 12000 g
(d) 40000 g
(e) 3945 g
(f) 600 g
(g) 850 g
(h) 735 g
(i) 60 g
(j) 75 g
(k) 2 g
(l) 78.1 g

Question 3 Convert the following into kilograms
(a) 5 tonnes
(b) 8 tonnes
(c) 15 tonnes
(d) 0.6 tonnes
(e) 1.6 tonnes
(f) 9.25 tonnes
(g) 0.3 tonnes
(h) 0.06 tonnes

Question 4 Karl is baking a loaf of bread and needs 0.8 kg of flour. He has 72 grams of flour.
How much more flour does Karl need?
 Give your answer in grams.

[^0]
Stewards Academy

Question 6 For each of the following, circle the most appropriate estimate.

Mass of a bag of sugar
$10 \mathrm{~g} \quad 100 \mathrm{~g} \quad 1 \mathrm{~kg}$
10 kg

Mass of an apple
$100 \mathrm{~g} \quad 10 \mathrm{~g}$
1kg
2kg

Mass of a woman
7g 70g 70kg
7 kg

Mass of a car
$200 \mathrm{~kg} \quad 1.5$ tonnes 10 tonnes 1500 g

Mass of a medium sized dog $\quad 100 \mathrm{~kg} \quad \mathbf{5 0 0 g} \quad \mathbf{2 k g} \quad 20 \mathrm{~kg}$

7 Rebecca has two dogs, Lucky and Pepe.
Lucky weighs 5.4 kilograms.
Pepe is 800 grams lighter than Lucky.
Work out how much Pepe weighs.

State your units.

Stewards Academy

Week 2:

- LI: I can estimate and convert between volume of liquid in litres and millilitres

Demonstration Videos: https://youtu.be/zGBNOofKYpQ

Tasks:

Question 1 Convert the following into millilitres
(a) 2 litres
(b) 6 litres
(c) 24 litres
(d) 1.8 litres
(e) 0.6 litres
(f) 0.125 litres
(g) 0.07 litres
(h) 2.05 litres

Question 2 Convert the following into litres
(a) 8000 ml
(b) 3000 ml
(c) 76000 ml
(d) 750 ml
(e) 540 ml
(f) 121 ml
(g) 88 ml
(h) 1035 ml

Question 3 James and Jack buy a 3 litre carton of orange juice. Each boy drinks 650 ml of orange juice. How much orange juice is left? Give your answer in litres.

4 Change to litres

1) 8000 ml
2) 2400 ml
3) 1350 ml
4) 750 ml
5) 65 ml

5 Change to millilitres

1) 9 litres
2) 8.6 litres
3) 0.775 litres
4) 0.65 litres
5) 0.3 litres

Question 6 For each of the following, circle the most appropriate estimate.

Volume of drink in a large bottle
1L
2L
4L
5L

Volume of water in a glass
15 ml
1.5L 150 ml

15L
5)

Volume of cola in a can
220 ml
330 ml
440 ml
550ml

Volume of a teaspoon of medicine
0.5 ml

5 ml
50ml
500ml
Complete the following

1. $8600 \mathrm{ml}=$ \qquad .litres
2. $80 \mathrm{cl}=$ \qquad .ml
3. $440 \mathrm{ml}=$ \qquad .cl
4. 0.06 litres $=$ \qquad ml
5. $0.5 \mathrm{cl}=$ \qquad .litres

Challenge Question

Tom wants to fill his bucket. His bucket holds 1 litre of water. That is 1000ml.

He can use these containers to fill his bucket. He can use each one more than once.

[^1]
Stewards Academy

Week 2:

- LI: I can draw and measure acute and obtuse angles reliably to the nearest degree

Demonstration Videos: https://corbettmaths.com/2013/03/05/measuring-angles/

Tasks:

Question 1: Write down the size of each angle being measured
(${ }^{2}$

(b)

(c)

(d)

Question 2: Measure each angle below
(a)

(c)

(d)

Question 3: Measure each angle below
(a)

(b)

(c)
(d)

Sophie has been asked to measure this angle. Her answer is 65° She has made a mistake. Explain what she has done wrong.

Question 1: Draw angles of the following size
(a) 20°
(b) 60°
(c) 80°
(d) 40°
(e) 10°
(f) 70°
(g) 50°
(h) 45°
(i) 25°
(j) 85°
(k) 75°
(l) 15°
(m) 12°
(n) 62°
(o) 38°
(p) 71°
(q) 56°
(r) 23°
(s) 28°
(t) 19°

Question 2: Draw angles of the following size
(a) 100°
(b) 150°
(c) 160°
(d) 120°
(e) 170°
(f) 130°
(g) 110°
(h) 125°
(i) 145°
(j) 165°
(k) 105°
(l) 95°
(m) 153°
(n) 107°
(o) 98°
(p) 133°
(q) 121°
(r) 149°
(s) 167°
(t) 108°

Space for drawing angles:

"Stewards Academy

Week 2:

- LI: I can estimate the size of any given angle and recognise acute, right, obtuse and reflex angles

Demonstration Video: https://corbettmaths.com/2012/08/10/types-of-angle/

Tasks:

Question 1: Estimate the size of each of these angles
(a)

(d)
(b)

(c)

(e)
(f)

(h)
(g)

(i)

(k)

Question 2

For all the angles in question 1 above, label the types of angles, use
A for acute
O for obtuse
R for reflex

Question 3
Draw a right angle. How many degrees are in the right angle? \qquad
Label the right angle with the correct notation.

Decide which of the angles is larger, if any, in each case:
a)

b)

c)

Stewards Academy

Week 3:

- LI: I understand angles around a point total 360 degrees

Demonstration Video: https://www.youtube.com/watch?v=mdAwUsf0k1s\&feature=youtu.be

Tasks:

Concept Corner

We can use \qquad to form an \qquad We can then \qquad this equation by using useful related equations.

For example: in the image above we can see that $360=$ \qquad $+$ \qquad
Therefore \qquad $=$ \qquad and therefore $c=$ \qquad

1
a) $360 \div 2$
b) $360 \div 4$
c) $\frac{1}{6}$ of 360
d) $\frac{1}{8}$ of 360
e) $180 \div 2$
f) $180 \div 3$
g) $\frac{1}{4}$ of 180
h) $90 \div 2$

2 Which of the calculations above could help you to calculate the size of each of the angles below?

"Stewards Academy

The questions on this page must be done without using a protractor
Question 3: Calculate the size of the missing angles
(a)

(b)
295°

(c)

254°
(d)

(e)

(f)

(g)

(h)

(i)

4

The diagrams below each show sets of equal angles formed around a point. Work out the size of the angles
a)

b)

Stewards Academy

Week 3:

- LI: I understand angles on a straight line total 180 degrees

Demonstration Videos: https://youtu.be/q5tV5V56Hr0

Tasks:

Question 1 Calculate the size of the missing angles

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

SStewards Academy

2
Find x
3 Find x
1)

1)
2)

2)
3)

4)

4 A tilted equilateral triangle and rectangle are drawn below. For each of the images find the value of: $a+b$
a)

b)

DIGIT Puzzle
How many ways can you complete these two angles?

Stewards Academy

Week 3:

- LI: I understand that vertically opposite angles are equal

Demonstration Videos: https://corbettmaths.com/2013/03/16/vertically-opposite-angles/ Tasks:

Concept Corner

We call the space between two lines the interior region. The space outside the lines is called the exterior region. If a third line crosses these two lines we call it a transversal.

Each of the intersections formed has two pairs of \qquad opposite angles which are always equal.

Identify all the pairs of vertically opposite angles in the diagram below.
1

2
The diagrams below show intersections between straight lines. Work out the missing angles.

Stewards Academy

Question 3

Shown below are two straight lines that cross. Calculate the size of the missing angles
(a)

(b)

(c)

(d)

(e)

(f)

4 The diagram on the right shows a pair of parallel lines crossed by a transversal.
a) Work out the missing angles.
b) Write a sentence to compare the angles formed at each intersection.

SStewards Academy

Week 4:

- LI: I can classify triangles according to their properties

Demonstration Video: https://corbettmaths.com/2012/08/09/types-of-triangles/

Tasks:

Concept Corner

Triangles can be categorised by analysing their geometric properties.
e.g. \qquad triangles have equal sides, equal angles, one line of symmetry and symmetry order one.

Question 1: Write down what type of triangle each picture shows.
(a)

(d)

(b)

(c)

(e)

(f)

1. State with a reason if the following triangles are equilateral, isosceles or scalene
a)

c)

d)

e)

f)

g)

h)

Stewards Academy

Copy and complete the table of types of triangles below. Where the triangle is possible, draw an example, otherwise write 'impossible'. Remember to label angles and sides that are equal.

	Scalene	Isosceles	Equilateral
No right angles			
Exactly one right angle			
No obtuse angles			
Exactly one obtuse angle			
More than one obtuse angle			

2 Decide if the following statements are always, sometimes or never true.
Sketch a triangle to justify your responses.
a) Equilateral triangles have three lines of symmetry
b) An isosceles triangle has order of rotational symmetry order two
c) A triangle has the same number of line symmetries as its order of rotational symmetry
d) A scalene triangle has no symmetries.
e) The equal sides on an isosceles triangle are longer than the third side.
f) Right-angle triangles are also scalene.

3 Copy the line segment shown in the diagram.
a) an isosceles triangle
b) a scalene triangle
c) a right-angle triangle

Stewards Academy

Week 4:

- LI: I can use a ruler and protractor to construct triangles

Demonstration Videos: https://corbettmaths.com/2013/03/28/constructing-sas-triangles/
 https://corbettmaths.com/2013/03/29/constructing-asa-triangles/

Tasks:

Side Angle Side triangles (there is an angle between two sides)

1. Using a ruler, draw out a line that is the length of one of the sides
2. Measure the given angle from the end of the line you have just drawn and draw a long line to mark your angle

3. Using a ruler, measure along the line for the given length
4. Connect the other end of the first line to finish off your triangle. Then label all of the sides and angles you have just measured/drawn.

Question 1: Accurately draw the following triangles.
(a)

(b)

(c)

(d)

(e)

(f)

Stewards Academy

Angle Side Angle Triangles (two angles with a side between them)

1. Draw a line with the given length
2. Measure one of the angles from one end of the line. The line going through the angle should be quite long

3. Measure the other angle from the other end of the line. The line through that angle will meet the line through the other angle. Then label all of the sides and angles you have just measured/drawn.

Question 2: Accurately draw the following triangles.
(a)

(d)

(b)

(e)
(c)

Question 1: Accurately draw two different isosceles triangles with an angle of 50°
Question 2: (a) Construct an equilateral triangle with side length of 6 cm
(b) Measure the height of the triangle
(c) Work out the area of the triangle

Page for drawing triangles

Stewards Academy

Week 4:

- LI: I understand that the sum of interior angles of a triangle is 180 degrees

Demonstration Videos: https://corbettmaths.com/2012/08/10/angles-in-a-triangle/

Tasks:

Concept Corner

The \qquad of the \qquad angles in any triangle is equal to 180 degrees
So, in the triangle above, $\boldsymbol{x}^{\circ}+\boldsymbol{y}^{\circ}+z^{\circ}=$
We can use this fact to find missing angles in triangles. e.g. In the triangle to the right
$x+62+37=180$ therefore $x=$ \qquad

1. i) Draw a bar model for each of the six problems below.
ii) Find the missing angle using your model.
a)

b)

c)

e)

f)

Question 2 Find the size of each missing angle.
(a)

(b)

(c)

(d)

(e)

(f)

Stewards Academy

Question 2: Find the size of each missing angle.
(a)

(b)

(c)

(f)

3 Jacob has measured the three angles in a triangle.
Two of his measurements are 45° and 70°
What is the third measurement?
$4 \quad$ An isosceles triangle has one angle of 52°.
Write down the possible sizes of the other two angles in the triangle.
Pair 1 \qquad and \qquad
Pair 2 \qquad and \qquad
5 Find the missing angles in the following problems
a)

b)

Show the sum of angles x and y is always equal to angle z

Stewards Academy

Week 5:

- LI: I can solve problems involving coordinates in the first quadrant

Demonstration Video: https://corbettmaths.com/2013/04/15/coordinates/
Note: this video gives information about 4 quadrants, you will only be asked questions here about the first quadrant (where all the coordinates are positive)

Tasks:

Concept Corner

We can use a coordinate: (x, y) to describe a location in 2-D space. A coordinate consists of two values, an x-ordinate and a y-ordinate. The \qquad describes the horizontal location and the \qquad describes the vertical location. The origin is the point \qquad -.
e.g. The point \qquad is a point 3 spaces to the left and 2 spaces up from the origin.

Question 1: Write down the coordinates of the points A, B, C, D, E, F, G and H.

Question 2: Plot the points on this grid
(a) $\mathrm{A}(3,1)$
(b) $\mathrm{B}(2,5)$
(c) $\mathrm{C}(5,4)$
(d) $\mathrm{D}(1,1)$
(e) $\mathrm{E}(4,0)$
(f) $\mathrm{F}(0,1)$
(g) $\quad \mathrm{G}(3,3)$
(h) $\mathrm{H}(0,0)$

1)

These are identical squares. What is coordinate C? \qquad , \qquad)
3. The image below is a taken from a section of a coordinate grid. Find the coordinates of the points A, B and C :

4. Find the fourth coordinate point to make:
a) A square
b) A trapezium
c) A parallelogram
d) A kite

Stewards Academy

Week 5:

- LI: I can identify lines of symmetry in any shape

Demonstration Video: https://corbettmaths.com/2013/05/15/line-symmetry/

Tasks:

Concept Corner

A shape has line \qquad or reflective symmetry if it can be divided into two identical \qquad by drawing a straight line.

The diagrams below show shapes with some of their lines of symmetry marked on.

Question 1: Draw all the lines of symmetry on each the shapes below
(a)

(b)

(c)

(d)

(e)

(f)

For each road sign, write down the number of lines of symmetry.
(a)

(b)

(c)

(d)

(e)
\square

Stewards Academy

1. All the polygons below have equal sides (they are equilateral).

How many lines of symmetry does each shape have?

b)

c)

d)

f)

2. Write down the mathematical name for each of these triangles.

Copy each triangle and draw in their lines of symmetry.

3. Each dotted line shows a line of symmetry of an incomplete polygon. Make a copy of the full polygons marking the lines of symmetry.
a)

b)

c)

Challenge questions

1) Complete the square.

Point Coordinates: \qquad
2) Complete a square that has the x-axis as a line of symmetry.
3) Complete an isosceles triangle that has the x-axis as a line of symmetry.

Stewards Academy

Week 5:

- LI: I can identify the order of rotational symmetry in any shape

Demonstration Video: https://corbettmaths.com/2012/08/10/rotational-symmetry/

Tasks:

Concept Corner

The order of \qquad symmetry is the number of positions a shape can be rotated into and still look the same.

The number of times the shape appears the same is called its \qquad of rotational symmetry.

All shapes have rotational symmetry of order at least one.
A square has rotational symmetry of order \qquad
A rectangle has rotational symmetry of order \qquad

1. Write down the order of rotational symmetry of each of the following shapes.
a)

b)

c)

d)

e)

Question 1: For each shape below, state the order of rotational symmetry
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Stewards Academy

2. Use the two copies of the shape to the right to:
a) Shade two more regions such that the shape has rotational symmetry order 4
b) Shade four more regions such that the shape has rotational symmetry order 2

3. The octagon below has been divided into 16 regions. If you were to shade in the regions:
a) What is the range of possible orders of rotational symmetry?
b) Which orders of rotational symmetry are not possible from shading the regions? Explain why.

Questions for depth:

Consider a 3×3 square grid.
a) How many ways can you shade complete squares to create a shape that has rotational symmetry order 2 ?
b) What is the maximum number of squares you can shade so that the shape created has rotational symmetry order 2 ?
What is the minimum?

c) Answer parts a) and b) for a 4×4 square grid.

Week 6:

- LI: I can create shapes given details of their symmetries

Demonstration Videos: https://corbettmaths.com/2013/05/15/line-symmetry/
https://corbettmaths.com/2012/08/10/rotational-symmetry/

Note, these are the videos from the last two lessons. Watch them again to help you do the tasks today. You might also find looking over your previous answers helpful.

Tasks:

1 Draw a shape with:
(a) 1 line of symmetry
(b) 2 lines of symmetry
(c) 0 lines of symmetry

2
Draw a polygon that satisfies the conditions of each region in the following table. If a region cannot be filled, explain why.

		Number of lines of symmetry			
		1	2	3	4
	3				
	4				
	5				
	6				

3 Draw a polygon that satisfies the conditions of each box in the following table. If a box cannot be filled, explain why.

		Order of rotational symmetry			
		1	2	3	4
$\begin{aligned} & \mathscr{U} \\ & \frac{0}{n} \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	3				
	4				
	5				
	6				

4 Shade one more square so this pattern has one line of symmetry

Shade three more squares so this pattern has one line of symmetry

Shade six triangles to make a pattern with rotational symmetry order 6 .

Stewards Academy

Week 6:

- LI: I can investigate and create tessellations

Demonstration Videos: https://corbettmaths.com/2012/08/02/tessellations-video/

Tasks:

\qquad s the tiling of a region using one or more shapes called \qquad with no and no \qquad In this example the tiles used are a \qquad and a \qquad

1. Create a tessellation pattern using eight copies of each of the following triangles:
a)

b)

c)

d)

2. Create a tessellation pattern using eight copies of each of the following quadrilaterals:
a)

b)

c)

d)

3. Copy and complete the tessellation pattern using an additional eight deltas:

"Stewards Academy

Question 4 Show how each of the following shapes tessellate.
4 For each you should draw at least 8 shapes.
(a)

(d)

(b)

(e)

(c)

(f)

5 This student is trying to tesselate quadrilateral tiles.

a) Explain why the four interior angles of any quadrilateral will be able to meet at a point.
b) Draw a similar pattern for each of the following using four tiles.

There are three regular tessellations that are possible using only one type of regular polygon (equilateral triangles, squares and hexagons)

There are several more semi-regular tessellations which are made from two or more types of regular polygon.

The pattern below shows a semi-regular tessellation using squares and regular octagons.

What other semi-regular tessellations can you find?

Attainment	Unit 3 －Construction and loci，Angles in parallel lines and Angles in polygons	
Band：	Knowledge and Understanding	Skills
$\begin{aligned} & \frac{1}{4} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	Understands how to comert measurements when squared 6＂	Converts cm^{2} to m^{2} when solving problems 6 Finds the area of compound shapes involving triangles，trapeziums and parallelograms 11 Sets up and soltes an equation involving angles in parallell lines 10
$\frac{3}{3}$	Understands how to solve problems involving angles in parallell lines 4 Understands how to construtt triangles 2 Derfies and uses the standard ruler and compass canstructions	ldentifies the different typer of angles formed by parallel lines and a transversal such as corresponding angles，alternate angles and interior angles Uses the warious properties of angles in parallel lines to solve problems 5
$\frac{\text { 酓 }}{}$	Revagnises how to find the area of various shapes 11 Understands that angles in a triangle add up to 180 degrees 1	Constructs a triange given three sides using a compass 2 Finds missing angles in geometrical figures $3 a$ Draws a rhombus given two sides and one angle 3b Solves problems with angles in triangles 5 Finds area of a trapezium 7 Solves real life problems irvolving area with conversions 5 Finds the area of a parallelogram 11
$\frac{\stackrel{5}{4}}{\frac{4}{0}}$	Derimes and illustribtes properties of quadrilaterrals 3 Understands how to comert standard units of measure 8	Draws a square given one side 9 a Draws a quadrilateral with the parallel sides indicated 9b
$\frac{8}{5}$	Understands angle properties in a triangle 1	Identify mistakes in measuring angles 1

[^0]: Question 5 A 2p coin has a mass of 7 grams. Find the total mass of $£ 80$ worth of 2 p coins. Give your answer in kilograms.

[^1]: How many different ways can Tom fill his bucket?

