

Attainment	P3 Particle model of matter (AQA)
Band :	Knowledge and Understanding
Yellow Plus/ Yellow	Link the particle model for solids, liquids and gases with density values in terms of the arrangements of the atoms or molecules.
	Explain how changes of state conserve mass.
	Explain that internal energy is the total kinetic energy and potential energy of all the particles that make up a system.
	Use the specific heat capacity equation to calculate mass, specific heat capacity or temperature change.
	Use the particle model to explain why the latent heat of vaporisation is much larger than the latent heat of fusion.
	Describe that the temperature of a gas is related to the average kinetic energy of the molecules.
Blue	Use particle diagrams to communicate ideas about relative densities of different states.
	Use the density equation to calculate mass and volume.
	State that mass is conserved when substances change state.
	Explain that changes of state are physical, not chemical, changes because the material recovers its original properties if the change is reversed.
	Describe that heating raises the temperature or changes the state of a system but not at the same time.
	Use the specific heat capacity equation to calculate the energy required to change the temperature of a certain mass of a substance.
	Describe the latent heats of fusion and of vaporisation.
	Use the equation $E = mL$
	Use the particle model to explain the effect on temperature of increasing the pressure of a gas at constant volume.
Green	Use density = mass/volume to calculate density.
	Describe changes of state as physical changes.
	Describe how heating raises the temperature of a system.
	Describe the effect of an increase in temperature on the motion of the particles.
	State that when an object changes state there is no change in temperature.
	State that in the particle model the higher the temperature the faster the molecules move.
White	Some elements of the above have been achieved